Evaluating drought effect on MODIS Gross Primary Production (GPP) with an eco-hydrological model in the mountainous forest, East Asia

TAEHEE HWANG*, SINKYU KANG†, JOON KIM‡, YOUNGIL KIM§, DOWON LEE§ and LAWRENCE BAND*

*Department of Geography, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA, †Department of Environmental Science, Kangwon National University, Chuncheon, Kangwon-do 200-701, Republic of Korea, ‡Department of Atmospheric Sciences, Yonsei University, Seoul 120-749, Republic of Korea, §Graduate School of Environmental Studies, Seoul National University, Seoul 151-742, Republic of Korea

Abstract

Surface soil moisture dynamics is a key link between climate fluctuation and vegetation dynamics in space and time. In East Asia, precipitation is concentrated in the short monsoon season, which reduces plants water availability in the dry season. Furthermore, most forests are located in mountainous areas because of high demand for agricultural land, which results in increased lateral water flux and uneven distribution of plant available water. These climatic and topographic features of the forests make them more vulnerable to drought conditions. In this study, the eco-hydrological model (Regional Hydro-Ecological Simulation System) is validated with various water and carbon flux measurements in a small catchment in Korea. The model is then extended to the regional scale with fine-resolution remote sensing data to evaluate the Moderate Resolution Imaging Radiometer (MODIS) leaf area index and gross primary productivity (GPP) products. Long-term model runs simulated severe drought effect in 2001 well, which is clearly shown in the ring increment data. However, MODIS GPP does not capture this drought effect in 2001, which might be from a simplified treatment of water stress in the MODIS GPP algorithm. This study shows that the MODIS GPP products can potentially overestimate carbon uptake specifically during drought conditions driven by soil water stress.

Keywords: drought effect, eco-hydrological model, gross primary productivity, MODIS, RHESSys

Received 17 July 2007 and accepted 25 October 2007

Introduction

Recently, eddy covariance measurement has enabled the estimation of turbulent fluxes of heat, water and carbon between vegetation and atmosphere over time scales of hours to years with minimal disturbances (Baldocchi et al., 2001; Schimel et al., 2002). However, this method typically provides spatially and temporally limited data, restricted to times when atmospheric conditions are steady and to a place of relatively flat terrain where vegetation extends more than 100 times the sampling height (Baldocchi et al., 2001). Particularly in mountainous forests like East Asia, where most remaining forests are located in topographically complex mountainous areas unsuitable for agricultural land, its temporal and spatial coverage is much more limited (Schimel et al., 2002). In addition, complex topography results in spatially heterogeneous microclimate conditions, redistribution of soil water and increase of water outflow from forest ecosystem, which characterizes temporal and spatial variability of forest carbon flux (Running et al., 1987; Band et al., 1993; Kang et al., 2002, 2006). Surface soil moisture dynamics is a key link between climate fluctuation and vegetation dynamics in space and time (Rodriguez-Iturbe, 2000),
which are not evenly distributed across rugged slopes (Famiglietti & Wood, 1994; Zheng et al., 1996; Yeakley et al., 1998). Therefore, incorporating lateral hydrological processes and topoclimate patterns into ecosystem processes is crucial to understand the spatial pattern of carbon fluxes in these environments.

Flux measurements are usually constrained by relatively small spatial and temporal scales (Baldocchi et al., 2001; Falge et al., 2002), whereas global flux estimates are represented by their large spatial and temporal scales. The US National Aeronautics and Space Administration (NASA) Earth Observing System (EOS; http://modis.gsfc.nasa.gov/) currently produces a regular global estimate of gross primary production (GPP) and net primary production (NPP) of the entire terrestrial earth surface at 1 km spatial resolution with algorithms (MOD17A3) designed for the Moderate Resolution Imaging Spectroradiometer (MODIS) sensor aboard Terra and Aqua platforms (Running et al., 2000, 2004; Heinsch et al., 2003; Zhao et al., 2005). MODIS products require validation to be useful for scientific purposes. However, validation of MODIS products with flux tower information raises important scaling issues. Bridging the gap between these two scales is a major challenge in upscaling flux measurements (Kim et al., 2006a). The combination of field measurements, remote sensing and process-based ecological modeling can be a useful tool to bridge these spatio-temporal gaps (Turner et al., 2003, 2005). Several flux tower sites have reported clear differences in the pattern of net ecosystem exchange (NEE) depending on temporal and spatial variability of footprints of turbulent flux measurements (Aber et al., 1996; Cienciala et al., 1998; Kim et al., 2006a). Therefore, it is also important to integrate the spatial information of land cover type and vegetation patterns when upscaling flux measurements to regional or global scale.

In this study, a GIS-based, eco-hydrological model [Regional Hydro-Ecological Simulation System (RHESSys)] (Band et al., 1993; Tague & Band, 2004) was used as a scaling tool from a small deciduous broadleaf forest (DBF) catchment to a regional watershed scale. The primary advantage of this model is to use streamflow data from a catchment outlet to match the mass balance of water cycle, not affected by topographic and atmospheric conditions. RHESSys considers the spatial variances of microclimate and soil water in simulating water and carbon dynamics of forest ecosystem. Therefore, the model estimates the spatial variances of soil water and fluxes of water and carbon at a regional scale, which would be more effective especially in complex terrain. Daily streamflow data and seasonal leaf area index (LAI) values were used to calibrate the model with both water and carbon cycles. Other field measurements and flux measurements for at least 1 year were used to evaluate model results. After this stepwise calibration strategy at a small catchment scale, the model was simulated to a regional scale by employing spatial vegetation information derived from high-resolution satellite images from the Landsat Enhanced Thematic Mapper plus (ETM+). Finally, regional scale model results were applied to evaluate MODIS land products (LAI and GPP/NPP).

The objectives of this study are to (1) simulate and validate the eco-hydrological model at a small catchment scale with various field and flux measurements, (2) scale up carbon and water processes to a regional scale by integrating spatial information derived from high-resolution satellite data, and (3) evaluate drought effect on MODIS land products with upscaled model results.

Materials and methods

Site description

The Gwangneung Experiment Forest (GEF) is located in the west-central part of the Korean peninsula and represents a typical cool-temperate broadleaved forest zone (Fig. 1). The watershed covers 15.8 km² area and elevation ranges from 58 to 619 m. GEF is composed of many vegetation patches of DBF and evergreen needle-leaf forest (ENF) characterized by different stand ages and disturbance history. In general, DBF stands are dominated by Quercus serrata, Carpinus laxiflora, Q. aliena, and Carpinus cordata, with stand ages ranging from 80 to 200 years and overstory canopy height of 18–20 m (Lim et al., 2003). DBF stands are in natural forest without thinning and with an unknown fire history. The average slope of the DBF catchment is about 19.0°, with an area of about 22.8 ha. ENF stands are dominated by Pinus koraiensis and Pinus banksiana with a mean canopy height of 16 m. The stands were artificially planted 70–80 years ago and have not experienced thinning with an unknown history of fire. The GEF was registered as the KoFlux network (http://www.koflux.org/) (Kim et al., 2006b) and the Korean Long-Term Ecological Research (KLTER) network (Oh et al., 2000), respectively. The annual precipitation is 1312.4 mm in 2002, about two-thirds of which falls in a monsoon season from late June to mid-July. The annual mean temperature is 11.3 °C in 2002.

Meteorological data

For this study, we used seven daily meteorological inputs [minimum and maximum temperature, precipitation, average daytime temperature, total shortwave radiation, vapor pressure deficit (VPD) and soil tempera-
Meteorological data have been measured at the DBF tower site every half hour since September 2001, and aggregated to a daily time step (Fig. 2). From 1997 to 2001, meteorological data from the Gwangneung automatic weather station (Station No. 599) in the study site were used. Before 1997, basic meteorological data (daily minimum and maximum temperature and daily precipitation) were inferred from data of a nearby surface meteorological station in Seoul (Station No. 108) by a simple regression with those from the Gwangneung automatic weathering station.

Field measurements

LAI. LAI, an important determinant in process-based biogeochemical models, is a valuable driver in scaling effort because this value is strongly correlated with normalized difference vegetation index (NDVI) derived from remote sensing images (Gholz et al., 1991; Nemani et al., 1993; Chen & Cihlar, 1996; Fassnacht et al., 1997). Across a broad range of ecosystems, seasonal maximum LAI tends to be correlated with aboveground NPP (Gower et al., 2001; Asner et al., 2003). LAI values were measured at five points randomly around the DBF flux tower and ENF site with a LI-COR 2000 Plant Canopy Analyzer (LI-COR Inc., Lincoln, NE, USA) during 2002. Winter measurements of DBF stands, considered stem area index, were used to correct the measured LAI, while those of ENF were estimated from Chen & Cihlar (1996). The projected LAI for ENF was recalculated by multiplying with a correction factor (needle-to-shoot area ratio) recommended in the literature (Gower & Norman, 1991; Chen & Cihlar, 1996; Gower et al., 1999) to consider the silhouette effect of evergreen needleleaf. The spatial LAI values within the study site were measured at points positioned by a GPS system from July to August 2003 (n = 32), regarded as maximum LAI values throughout the year (Fig. 3). The LAI values were compared with Landsat ETM+ NDVI values to derive a map of maximum LAI (Fig. 4a). Each LAI value represents the average of four replicate measurements of LAI values at points of a 30 m² with a 90° view cap.
NPP. The annual NPP of 2003 was estimated from biomass increment and foliage production. Total biomass increments were estimated from diameter at breast height (DBH) by tree biometric equations that were developed for dominant woody species within the study site (Lim, 1998). One hundred ten core samples were collected from ten 20 m x 20 m plots around the DBF flux tower, which differ in species composition and slope. Foliage production was measured from the litter traps within the study area in 2003 (Suh et al., 2005). The estimated biomass increment in 2003 was 293.7 g C m\(^{-2}\) yr\(^{-1}\), and foliage production was 128.4 g C m\(^{-2}\) yr\(^{-1}\). If we assume a constant allocation ratio between new fine root and new leaf carbon (1.2 for DBF; White et al., 2000), annual estimated NPP values are 576.2 g C m\(^{-2}\) yr\(^{-1}\).

Model parameters. Most major model input parameters were measured on-site (Table 2). Eco-physiological parameters such as C/N ratio, lignin, and specific leaf area, etc. were measured separately both at DBF and ENF stands. Phenological parameters were estimated from a time series of LAI measurements (Fig. 3), observations and MODIS data (Fig. 12). Eleven soil pits were dug around the DBF catchment to measure soil characteristic input parameters (soil texture, porosity, bulk density and rooting depth). These values were used as soil default parameters in the model simulation (Table 2). Leaf turnover ratio of ENF (0.55) was calculated from the ratio of winter LAI to summer LAI values (Fig. 3).

Other field measurements. Other field measurements were conducted intensively at a southeast-facing DBF slope near the flux tower and a northeast-facing ENF slope from September 2001 to July 2003, where elevations are approximately 330/320 m and surface slopes are about 15/23° each. Soil respiration was measured biweekly at five points randomly at both sites using the EGM2 infrared gas analyzer (PP Systems, Hitchin, Hertfordshire, UK). Site-specific temperature scalar functions for both forests (\(Q_{10}\) values; Table 2) were also developed for soil respiration using soil temperature data measured simultaneously at 10 cm depth. Volumetric soil water content has been measured every 30 min at five sites around the DBF flux tower at 0–30 cm soil depth with TDR water content reflectometer (Campbell Scientific Inc., Logan, UT, USA). Soil samples were collected from 10 cm depth at both forests biweekly to measure the amount of soil organic carbon in the laboratory. Total soil carbon storage per unit area was calculated from bulk density, percent soil organic carbon and A-horizon depth (Table 2), used to evaluate the initial state of soil carbon storage of the model.

Flux measurements

The flux tower of the DBF stands is located near the outlet of the DBF catchment. Measurements began in September 2001. Fluxes of CO\(_2\), water vapor and sensible heat were measured above the forest by eddy covariance system installed on a 30 m walk-up tower. The system has a fast response infrared gas analyzer (LI7500, LI-COR Inc.) and a three-dimensional sonic anemometer (CSAT3, Campbell Scientific Inc.). Owing to the hilly terrain condition of the study site, the data retrieval rate from the flux tower turned out to be on the order of 10% (Choi et al., 2003). Using this information, daytime NEE was estimated from the relation with photosynthetically active radiation (PAR) measured on-site, and night-time NEE was estimated from soil respiration data. Daily NEE data were recalculated on the basis of these estimated daytime and night-time NEE (Choi et al., 2003).

High-resolution satellite image (Landsat ETM+)

The two Landsat ETM+ images were used for determining spatial pattern of LAI and classifying vegetation types; summer (September 4, 2000) and winter (December 28, 2002). NDVI was calculated with the following equation:

\[
\text{NDVI} = \frac{R_{\text{NIR}} - R_{\text{RED}}}{R_{\text{NIR}} + R_{\text{RED}}},
\]

where \(R_{\text{NIR}}\) is the reflectance within the near-infrared (NIR) and \(R_{\text{RED}}\) is the reflectance within the red band. NDVI values derived from late summer Landsat ETM+ image before litterfall (September 4, 2000; Fig. 1) were used to calculate the spatial pattern of maximum LAI throughout the year (Fig. 4a). A strong log correlation between measured LAI and calculated NDVI was obtained (\(r^2 = 0.86, n = 32\); not shown here), which has also been reported by other researchers (Gholz et al., 1991; Nemani et al., 1993; Chen & Cihlar, 1996; Fassnacht et al., 1997). Considering the fact that asymptotic LAI value around saturation is usually about six in the relationship between LAI and NDVI, this method is quite effective within this study area where the maximum LAI is below the saturation point.

The summer and winter images were classified into three land cover classes: DBF, ENF and bare soils. First, the winter image was rectified with summer image, and then bare soil detected from a summer NDVI image was masked. The NDVI image retrieved from a winter image was classified into DBF and ENF. An unsupervised method was used for classifying both images. Urban areas and croplands were stratified into bare soil, while forests were stratified into DBF and ENF (Fig. 4c). Accuracy assessment of land cover classification map
was carried out pixel by pixel referred with a forest cover map provided by the Korea Forest Research Institute. Overall accuracy is about 62% assuming that each pixel contains only one biome type.

MODIS LAI and GPP/NPP products

The MODIS LAI (MOD15A2) and GPP/NPP (MOD17A2) products were employed to compare with upscaled model results. MOD17 products were reproduced by on-site measured meteorological data from 2001 to 2005 to reduce the error from meteorological data which can be the single largest source of error associated with MODIS GPP/NPP (Zhao et al., 2005; Heinsch et al., 2006). In the production of GPP/NPP

Fig. 2 Yearly meteorological data of DBF flux tower site (2002). DBF, deciduous broadleaf forest.

Fig. 3 Seasonal pattern of projected LAI at both biome stands; deciduous broadleaf forest (DBF) and evergreen needleleaf forest (ENF) (each point represents average value of five measurements). LAI, leaf area index.

© 2008 The Authors
estimates, poor quality LAI and fraction of absorbed PAR (FPAR) values were removed based on the quality control (QC) label for each pixel and filled by spatial and temporal linear interpolation (Kang et al., 2005; Zhao et al., 2005). The MODIS land products are produced as the HDF-EOS data format in the Sinuosidal (SIN) projection at the 8-day temporal resolution and an approximately 1 km spatial resolution (Running et al., 2000; Heinsch et al., 2003), reprojected to the GeoTIFF file format with the Universal Transverse Mercator (UTM) coordinate system by MODIS reprojection tool (MRT; http://edcdaac.usgs.gov/landdaac/tools/modis/index.asp). All MODIS data were aggregated to the 5 km × 5 km grid scale to compare with up-scaled model results, large enough to include the entire watershed (15.8 km²) and minimize issues of geolocation and representativeness. This aggregated scale was also used for the BigFoot project to evaluate the MODIS GPP product (Turner et al., 2003, 2005).

The MODIS GPP/NPP products strongly depend on MODIS land cover classifications (MOD12Q1; version 3.0) because biome-specific parameters involved in an algorithm are estimated from biome types of MODIS land cover classifications. Within an aggregated 5 km × 5 km scale, most pixels were classified into mixed forest (MF) with an exception of two pixels of DBF and four pixels of urban area. Therefore, MODIS land cover product within the study area is fairly accurate considering the above land cover composition from the Landsat ETM+ (Fig. 4c), which reduces the possibility of a potential error associated with land cover misclassifications (Heinsch et al., 2006; Zhao et al., 2006).

Model analysis

Process-based eco-hydrological model

RHESSys is a GIS-based, eco-hydrological modeling framework designed to simulate carbon, water and nutrient fluxes (Band et al., 1993; Tague & Band, 2004). RHESSys has been developed from several pre-existing models. First, a microclimate model, MT-CLIM (Running et al., 1987) uses topography and user supplied base station information to extrapolate spatially variable climate variables over topographically varying terrain. Second, an eco-physiological model is adapted from an early version of Biome-BGC (Running & Coughlan, 1988; Running & Hunt, 1993; Kimball et al., 1997) to estimate carbon, water and potential nitrogen fluxes from different canopy cover types. Third, a hydrological model, TOPMODEL (Beven & Kirkby, 1979) is a quasi-distributed model. TOPMODEL distributes soil moisture based on the distribution of a topographically defined wetness index. Fourth, representation of soil organic matter decomposition in RHESSys is largely based on the CENTURY model (Parton et al., 1993). RHESSys also uses the CENTURY N GAS (Parton et al., 1996) approach to model nitrogen cycling processes such as nitrification and denitrification. Key processes in RHESSys were shown in Table 1. Detailed explanation of this model is available in the RHESSys homepage (http://fiesta.bren.ucsb.edu/~rhecssys/) and Tague & Band (2004).

For this study, recent Biome-BGC (version 4.1.1) changes from the comparison with flux tower data were updated to the current version of RHESSys. These are relevant to the deployment strategy of retranslocated nitrogen and the treatment of daily allocation in the face of a carbon pool deficit (Thornton, 2000).

Model initialization (spin-up process)

A spin-up process in RHESSys simulation is required to allow carbon and nitrogen storages to stabilize, and to build up an organic soil layer. Initial carbon state is quite important in that this value is a major determinant of heterotrophic respiration, which is difficult to estimate as it is so sensitive to long-term disturbance history (Law et al., 2001, 2004). The ranges of soil organic carbon from the spin-up simulation were 11.1 ± 1.4 kg C m⁻² for DBF and 6.8 ± 0.8 kg C m⁻² for ENF. These initial states correspond well with on-site measurements throughout the year; 10.8 ± 2.5 kg C m⁻² for DBF (n = 135) and 7.5 ± 2.0 kg C m⁻² (n = 250) for ENF and previous measurements by other researchers; 9.2 kg C m⁻² for DBF (n = 20) (Lim et al., 2003).

Model parameterization

Water cycle. Parameterizations were implemented sequentially in water and carbon cycles for the simulation efficiency. The behavioral parameter sets of RHESSys were found first from streamflow prediction, and then LAI. Calibration processes are first conditioned on streamflow data varying m (the decay rate of hydraulic conductivity with depth) and Ksatz (saturated hydraulic conductivity at surface) for both lateral and vertical sets with default parameters of carbon cycle. Monte-Carlo simulation was implemented 5000 times with randomly sampled parameter values within certain acceptable ranges. A 3-year calibration period (July 1986 to June 1989) was chosen by considering the representativeness of precipitation patterns and the continuity of streamflow data. At each simulation time, 1.5-year initialization simulation was used before the calibration period to allow soil moisture to stabilize. Nash–Sutcliffe (N–S) coefficient (Nash & Sutcliffe, 1970)
was calculated from the following equation to evaluate model performance:

\[N-S = 1 - \frac{\sum_{i=1}^{N} (Q_{\text{obs},i} - Q_{\text{sim},i})^2}{\sum_{i=1}^{N} (Q_{\text{obs},i} - \bar{Q}_{\text{obs}})^2}, \]

where \(Q_{\text{obs},i} \) and \(Q_{\text{sim},i} \) is the observed and simulated daily streamflow on \(i \)th day and \(\bar{Q}_{\text{obs}} \) is the average value for the period being simulated. However, this measure tends to emphasize correspondence between peak flows, which are far higher in this monsoon-dominated climate region. Therefore, log of streamflow values were used in this study to calculate the N–S coefficient as an objective function of calibration.

Carbon cycle. The carbon cycle was calibrated separately at DBF and ENF stands with common optimal water cycle parameters from the DBF catchment under the assumption that hydrological patterns in soils are not significantly affected by biome types within the study area. The \(\text{Epc.flnr} \) (fraction of leaf nitrogen in rubisco) parameter was used to calibrate carbon cycle with LAI data (Fig. 3), known for their high sensitivity (White et al., 2000). A trial and error method was employed to minimize the root mean square error (RMSE) between measured and simulated LAI values for both biome types. After this carbon cycle calibration, the N–S coefficient of streamflow simulation was recalculated to check the feedback effect on water cycle by an altered vegetation parameter. The temperature scalar function of heterotrophic respiration was modified to reflect on-site measured \(Q_{10} \) values of soil respiration (Table 2). Other eco-physiological and allometric parameters were chosen by following the recommended parameter selections of DBF and ENF biome types in the Biome-BGC model (White et al., 2000). All carbon processes were simulated at daily scale at the end of hourly simulations of water processes.

Spatial data assimilation

The RHESSys framework partitions a landscape into a hierarchical spatial structure with levels that are associated with different processes (Tague & Band, 2004). Each level is defined as a particular class type that has specific storage, flux and default variables appropriate for that level. Hillslopes are defined as areas draining into each side of a defined stream link. All other processes were simulated at the same grid scale of the Landsat ETM+ image (i.e. 30 m), allowing modeling of the spatial variance of microclimate, soil water dynamics and vegetation processes at the same scale. This regular grid-based framework is also particularly suitable for application to remote sensing images, where remote sensing image pixels can be treated as the homogeneous spatial units (Chen et al., 2005).

A digital elevation model (DEM) in the form of 10 m grid was used to calculate aspect, slope and topographic index map which all are also input raster datasets for RHESSys. Wetness index (or topographic index; Beven & Kirkby, 1979) was calculated by Eqn (3) (Fig. 4b).

\[w_i = \ln \left(\frac{a}{\tan \beta} \right), \]

where \(w_i \) is wetness index, \(a \) is upslope contributing area per unit contour length and \(\beta \) is local slope. Upslope contributing area was calculated from \(D \)-infinity (\(D_\infty \)) method, which allows flow to be proportioned between multiple neighboring downslope pixels.

\[wi = \ln \left(\frac{a}{\tan \beta} \right), \]

where \(wi \) is wetness index, \(a \) is upslope contributing area per unit contour length and \(\beta \) is local slope. Upslope contributing area was calculated from \(D \)-infinity (\(D_\infty \)) method, which allows flow to be proportioned between multiple neighboring downslope pixels.
Table 1 Key processes of RHESSys model

<table>
<thead>
<tr>
<th>Processes or parameters</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vegetation</td>
<td></td>
</tr>
<tr>
<td>Water</td>
<td></td>
</tr>
<tr>
<td>Interception</td>
<td>f (all-sided LAI)</td>
</tr>
<tr>
<td>Transpiration</td>
<td>Penman–Monteith eqn.*</td>
</tr>
<tr>
<td>Leaf conductance</td>
<td>f (T, θ, APAR, VPD, CO₂)* (Jarvis, 1976)</td>
</tr>
<tr>
<td>Carbon</td>
<td></td>
</tr>
<tr>
<td>Photosynthesis</td>
<td>Farquhar eqn.* (Farquhar et al., 1980)</td>
</tr>
<tr>
<td>Maintenance respiration</td>
<td>f (T, N, C)* (Ryan, 1991)</td>
</tr>
<tr>
<td>Growth respiration</td>
<td>Constant (Biome-BGC)</td>
</tr>
<tr>
<td>Allocation/Mortality</td>
<td>Constant (Biome-BGC)</td>
</tr>
<tr>
<td>Turnover</td>
<td>Constant (Biome-BGC)</td>
</tr>
<tr>
<td>Nitrogen</td>
<td></td>
</tr>
<tr>
<td>Fixed C/N ratio for each compartment</td>
<td></td>
</tr>
<tr>
<td>Retranslocation of stored nitrogen during the litterfall process</td>
<td></td>
</tr>
<tr>
<td>Soil</td>
<td></td>
</tr>
<tr>
<td>Water</td>
<td></td>
</tr>
<tr>
<td>Infiltration</td>
<td>Phillip’s eqn.</td>
</tr>
<tr>
<td>Drainage</td>
<td>Clapp & Hornberger (1978)</td>
</tr>
<tr>
<td>Evaporation/Capillary rise</td>
<td>Eagleson (1978)</td>
</tr>
<tr>
<td>Lateral redistribution</td>
<td>TOPMODEL (Beven & Kirkby, 1979)</td>
</tr>
<tr>
<td>Saturated throughflow</td>
<td>TOPMODEL (Beven & Kirkby, 1979)</td>
</tr>
<tr>
<td>Carbon</td>
<td></td>
</tr>
<tr>
<td>Heterotrophic respiration</td>
<td>f (T, θ, C, M, N) (Parton et al., 1996)</td>
</tr>
<tr>
<td>Nitrogen</td>
<td></td>
</tr>
<tr>
<td>Nitrification</td>
<td>f (T, θ, M, NH₄⁺) (Parton et al., 1996)</td>
</tr>
<tr>
<td>Denitrification</td>
<td>f (θ, M, NO₃⁻) (Parton et al., 1996)</td>
</tr>
<tr>
<td>Leaching</td>
<td>Flushing hypothesis</td>
</tr>
<tr>
<td>Plant uptake</td>
<td>f (soil mineral N)</td>
</tr>
</tbody>
</table>

*Computed for sunlit and shaded leaves separately. LAI, leaf area index; T, temperature; θ, rootzone soil moisture contents; APAR, absorbed photosynthetically active radiation; VPD, vapor pressure deficit; N, nitrogen contents; C, substrate (carbon) quality; M, substrate (carbon) storage; RHESSys, Regional Hydro-Ecological Simulation System.

Spatial calibration process

For the application of RHESSys to the entire watershed, the spatial pattern of vegetation derived from Landsat ETM+ image was forced to the model simulation. Even though this study site has not been disturbed much in comparison with other forests in Korea, it is not a perfectly intact region. There are some human land uses such as rice paddy, arboretum, restaurants and inns especially along the stream lines. Therefore, when applying the spatial pattern of vegetation in the model simulation, these patches of different land cover types need to be considered. The stepwise calibration approach cannot consider the human effects on vegetation, most of which were established by artificial gaps within forest. Spatial LAI information cannot be prescribed directly into the model because the model is self-regulating with respect to LAI. The spatial output of maximum LAI in the first run can be regarded as a potential vegetation growth, where microclimate, soil moisture and intraspecific controls are the only constraints for vegetation growth without anthropogenic and other disturbances. Therefore, the ratio of the estimated LAI from the satellite image to potential LAI values was considered as a cover fraction, which means the ratio of vegetation cover within a subpixel. This cover fraction map was reused as input data, by which value all initial state variables were also multiplied.

Results

Validation with streamflow data

A maximum N–S coefficient for the DBF catchment during the 3-year calibration period (July 1986 to June 1989) is 0.78 (Fig. 5b), while that of the 20-year validation period (January 1982 to December 2000) is 0.41 (Fig. 5c). Using the same parameter values, the N–S coefficient of the ENF catchment during the validation period is 0.52 (not shown here), which suggests the DBF calibration is adequate for representation of soil hydrologic properties in the ENF catchment. Even though there can be a number of possible reasons for the differences between measured and simulated streamflow during the long validation period, the major source of error might be incorrect precipitation data. On-site measured precipitation data were not available during most of the validation period. Instead, regressed precipitation data from the nearby weather station (Seoul; Station No. 108) were used for model simulation. For this reason, several mismatches of rainfall events were found between precipitation and streamflow data.

Validation with field and flux measurements

Modeled soil respiration shows fairly good agreement with measured data for both forest types ($r^2 = 0.92$; Fig. 6a). The simulated annual soil respiration at patch
scales were about 991 ± 112.4 g C m\(^{-2}\) yr\(^{-1}\) on 2002, close to the amount of soil respiration estimated from soil temperature and soil water contents at the same site (1107 g C m\(^{-2}\) yr\(^{-1}\); Kang et al., 2003a). Evaluating soil respiration is quite important as upscaling targets of carbon flux are GPP/NPP units, composed of flux tower NEE estimates and ecosystem respiration terms. Simulated volumetric soil water content fits well with measured data except for the winter season (\(r^2 = 0.87\); Fig. 6b). During the winter season, the fluctuations of simulated soil moisture are significantly decreased by an effect of snow cover or freezing effects in the model, not observed in measurement data. However, overall fluxes during the dry winter season are too small to result in a significant bias at a long-term scale.

The seasonal patterns of calculated and simulated daily NEE shows a relatively good correlation (\(r^2 = 0.56\); Fig. 7a). Total annual estimated NEE of the deciduous forest is \(-232.2\) g C m\(^{-2}\) yr\(^{-1}\) on 2002. This suggests that the deciduous forest in GEF acts as a carbon source, mostly due to very high levels of heterotrophic respiration. Even though fully effective daily evapotranspiration (ET) data were obtained only from 12 days for 1 year (June 2002 to September 2003), it shows a good agreement with simulated daily ET for the deciduous catchment (Fig. 7b). Total simulated annual NPP for the DBF catchment is 598.5 ± 23.5 g C m\(^{-2}\) yr\(^{-1}\) on 2003, while the estimated annual NPP from biometric equation and foliage production is 576.2 g C m\(^{-2}\) yr\(^{-1}\) (Fig. 8). Annual total ET is 564.5 mm yr\(^{-1}\) at the DBF catchment in 2002, whereas total ET is 737.1 mm yr\(^{-1}\) (56.2\%) at the ENF catchment. Annual ET can be estimated from the mass balance equation by subtracting annual streamflow from annual precipitation assuming that there is not so much change in soil water storage. These annual ET estimates correspond to the simulated values and follow their interannual variations fairly well (Fig. 8). Spatial patterns of annual NPP and ET within the DBF catchment are also shown in Fig. 9.

Interannual variations of NPP and ET

The long-term model simulation of the DBF catchment clearly shows a severe drought effect on NPP in 2001, also indicated in radial growth measurements (Fig. 8). This severe drought effect on radial growth measurements is unprecedented during the past decade, and is an accumulative effect following the moderate drought in 2000. Interestingly, model results can also simulate the slight NPP overshoot of ring increment data in 1999 and follow those interannual patterns very well. Figure 9a shows that the spatial pattern of annual NPP estimates during the extreme drought year (2001) is more sensitive to the soil moisture gradients than that of the moderate year (2002). A spatial variation of simulated NPP within the DBF catchment increases during the drought year in spite of their small amounts (Figs 8 and 9a). It strongly suggests that spatial distributions of annual NPP estimates should be more dependent on soil moisture gradient particularly during the drought year. This severe drought effect should

<table>
<thead>
<tr>
<th>Sample number</th>
<th>DBF</th>
<th>ENF</th>
</tr>
</thead>
<tbody>
<tr>
<td>Leaf (SD)</td>
<td>5</td>
<td>21.4 (1.46)</td>
</tr>
<tr>
<td>Leaf litter (SD)</td>
<td>5</td>
<td>56.6 (10.1)</td>
</tr>
<tr>
<td>Leaf litter (SD)</td>
<td>3</td>
<td>50.4 (0.28)</td>
</tr>
<tr>
<td>Fine root</td>
<td>1</td>
<td>53.3</td>
</tr>
<tr>
<td>Specific leaf area (SLA, m(^2) kg(^{-1}))</td>
<td>10</td>
<td>28.5</td>
</tr>
<tr>
<td>Q(10) values for soil respiration</td>
<td>150/140</td>
<td>4.37</td>
</tr>
<tr>
<td>Leaf on (period)</td>
<td>2</td>
<td>105 (45)</td>
</tr>
<tr>
<td>Leaf off (period)</td>
<td>2</td>
<td>280 (40)</td>
</tr>
<tr>
<td>Soil properties</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Saturated hydraulic conductivity</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A horizon (m day(^{-1}))</td>
<td>11</td>
<td>32.6 (21.7)</td>
</tr>
<tr>
<td>B horizon (m day(^{-1}))</td>
<td>11</td>
<td>18.9 (6.0)</td>
</tr>
<tr>
<td>Texture (%) (sand/clay/silt)</td>
<td>3</td>
<td>62.2/20.3/17.5</td>
</tr>
<tr>
<td>Porosity (SD)</td>
<td>11</td>
<td>0.49 (0.071)</td>
</tr>
<tr>
<td>Bulk density (kg soil L(^{-1})) (SD)</td>
<td>11</td>
<td>0.877 (0.077)</td>
</tr>
<tr>
<td>Rooting depth (m) (SD)</td>
<td>11</td>
<td>0.74 (0.18)</td>
</tr>
</tbody>
</table>

© 2008 The Authors
be mainly dependent on soil water stress rather than VPD or temperature, because the spatial patterns of those two are functions of the elevational gradients in the model.

ET also shows a very similar temporal and spatial drought pattern with NPP (Figs 8 and 9b). Although both NPP and ET clearly show drought effect all over the DBF catchment in 2001 (Fig. 9), carbon uptake (NPP)

Fig. 5 Observed (Q_{obs}) and simulated (Q_{sim}) streamflow data in the DBF catchment (1982–2000) (a), the log scatter plot of calibration period (b) and validation period (c). DBF, deciduous broadleaf forest.
seems to be more sensitive to the drought than water loss (ET). This also indicates a decrease of water use efficiency (WUE) during the drought condition. In the model algorithm, evaporation is more persistent than transpiration in dry conditions, as incoming precipitation first enters interception storage and may not recharge soil moisture. Therefore, evaporation during the drought condition can effectively decouple from carbon uptake.

Model results at the entire watershed
The spatial patterns of NPP and ET show a composite effect of vegetation cover, microclimate and topography. Some examples of model simulation for shortwave downward radiation, daily average temperature, rootzone soil moisture and water table depth are shown (Fig. 10). Direct shortwave radiation maps show clear topographic effects between different slopes, while daily average temperature is mainly affected by elevation information. Water table depth is more fully connected within a hillslope following the TOPMODEL assumption, whereas rootzone soil water content, which is more affected by local water balance by vegetation within a rootzone layer especially during the dry period.

Total annual NPP within the entire watershed ranges from 337.4 ± 103.4 g C m⁻² yr⁻¹ (2001) and 504.8 ± 167.3 g C m⁻² yr⁻¹ (2002) (Fig. 11a), whereas total annual ET ranges from 435.8 ± 118.5 mm yr⁻¹ (2001) and 512.2 ± 143.2 mm yr⁻¹ (2002) (Fig. 11b). The DBF forest is usually characterized by relatively higher NPP and lower ET values compared with ENF.

Comparison with temporal MODIS data
Consistent overestimation of MODIS LAI during the summer season were observed in this study (Fig. 12a), which were also reported for the Collection 4 MODIS LAI products at other forested sites (Cohen et al., 2003, 2006; Fang & Liang, 2005; Leuning et al., 2005; Heinsch et al., 2006). One possible explanation is understory canopy which was not considered for site measurements and modeling processes (Heinsch et al., 2006). However, MODIS LAI values were retrieved from reflectance information for a vertically and horizontally integrated canopy. It seems that the overestimation of the MODIS LAI did not directly result in the
overestimation of the MODIS GPP (Fig. 12b). It is mainly because the MOD17 algorithm integrates FPAR values for the radiation use efficiency equation which are not very much different between the ranges of simulated LAI and MODIS LAI with the nonlinear relationship between FPAR and LAI (Myneni et al., 2002). If the LAI overestimation is mostly from the suppressed understory canopy, its contribution to GPP and ET is not that much because of its limited light availability.

A seasonal pattern of simulated GPP shows clear effects by two severe drought events during the early June and the late September in 2001, when we can find considerable overestimation of the MODIS GPP (Fig. 12b). Usually, the spring leaf-on of the MODIS LAI tends to run several weeks earlier than simulated trajectory of LAI, whereas the fall leaf-off of the MODIS LAI tends to be late a week or more. The current version of RHESSys does not incorporate the phenology model to account for environmental controls on the timing of leaf-on and off (White et al., 1997). However, phenological parameters were directly observed on-site for 2002−2003 (Table 2), which means there can be some bias in the MODIS LAI trajectory. Although Kang et al. (2003b) reported acceptable representations of phenological seasonality by the MODIS LAI product in the same temperate mixed forest, this kind of bias was observed during the whole simulation period and also reported by other researchers (Fensholt et al., 2004; Turner et al., 2006; Yang et al., 2006). Turner et al. (2006) related this bias to leafing out of vernal herbs and understory trees which would be detected by the MODIS sensor but not by site measurements, because the understory may flush out earlier in the season. The MF within this study site is particularly represented by the combination of overstory ENF and understory DBF.

Discussion and conclusions

In this study, an eco-hydrological model, RHESSys, was validated against flux and various field measurements at a catchment scale, and then applied for the simulation of spatial variations of GPP/NPP in a topographically complex forest at the regional scale. The model was calibrated deliberately at a small catchment scale with streamflow and seasonal LAI data for water and carbon cycles sequentially, and then model predictions were validated with a set of separate field measurements (soil water content, soil respiration and NPP/ET estimates) and flux data (NEE, ET). The
comparison between interannual variations of NPP estimates from the model and ring increment data clearly shows the extreme drought effect in 2001. Water and carbon fluxes were scaled up to evaluate temporal MODIS LAI and GPP products by incorporating spatial information from high-resolution satellite images.

The current MOD17 algorithm integrates two simple linear ramp functions of daily minimum temperature and VPD to produce radiation use efficiency modified from the Monteith equation (Zhao et al., 2005, 2006; Heinsch et al., 2006), where water stress is only represented by the VPD attenuation function. There are several reasons why water stress is represented by the VPD attenuation function alone in the current MODIS GPP/NPP algorithm (Mu et al., 2007). First, it is currently difficult to estimate soil moisture or soil water potential globally at the resolution and domain of the MODIS sensor because of inaccurate global precipitation estimates for driving ecosystem models and tremendous computational load for water mass balance simulation. Second, some studies suggest that atmospheric condition (e.g. VPD) can be an indicator of environmental water stress at a long-term scale (e.g. Nemani et al., 2002). Third, MODIS FPAR and LAI estimated from MODIS vegetation indices (NDVI, EVI) partially reflect the water status of the rootzone soil and atmosphere, because water stress can easily result in phenological changes especially in grass-based ecosystems. To date, reliable and consistent estimation of soil moisture from remote sensing platforms have not been developed at the resolution of MODIS.

However, a constraint function of soil water content was typically used at the plot scale in different short-term models for stomatal conductance (Jarvis, 1976; Tardieu & Davies, 1992; Kelliher et al., 1995; Oren & Pataki, 2001; Dewar, 2002), because VPD and soil water stress have very different characteristics in terms of spatial and temporal dynamics. Soil moisture has higher spatial variability than VPD due to its strong dependence on topographic gradient and lower temporal variability than VPD due to its buffering effect within a soil column. Therefore, one possible result of this simplification in the MOD17 algorithm is a lack of ability to detect a continuous seasonal drought stress driven by soil water (Turner et al., 2005, 2006). Mu et al. (2007) have evaluated atmospheric water stress expressed in the MODIS GPP algorithm with full environmental water stress simulated by Biome-BGC over the entire USA and China. They found that atmospheric control cannot capture the seasonality of environmental water stress well in water limited ecosystems in China dominated with a strong summer monsoon cycle than other regions as the summer monsoon easily decouples atmospheric conditions with soil water stress terms. This mismatch between atmospheric controls and soil moisture stress will be particularly significant in mountainous forest areas where soil water patterns are more dependent on topographic drainage.

From long-term model simulation, we found that the interannual variations of simulated NPP estimates were well correlated with radial ring growth patterns. This severe drought effect of NPP was closely related to soil water.
water stress rather than atmospheric controls (temperature and VPD), and carbon uptake (NPP) seems to be more sensitive to the drought condition than water loss (ET). A recent study in three Mediterranean sites also supports these findings (Reichstein et al., 2002). They reported that light-saturated ecosystem gross carbon uptake and daytime averaged canopy conductance declined by up to 90%, closely related to soil water stress. They also found that the observed WUE significantly decreased during the drought events whether ET from eddy covariance or transpiration from sapflow had been used for the calculation. Baldocchi (1997) found a similar result in a deciduous broadleaf forest. In that study, transpiration could be correctly predicted during a moderate drought by decreasing the proportionality constant (the Ball–Berry coefficient) between stomatal conductance and photosynthesis as a function of the cumulative drought index. Leuning et al. (2005) also reported important findings by comparing multiyear flux measurements between two contrasting ecosystems in Australia; temperate Eucalyptus forest and tropical savanna. They reported that MODIS GPP was significantly overestimated during the dry season (low-rainfall summer), but gave reasonable estimates during the other two wet seasons in a savanna ecosystem where rainfall amount and timing exclusively controls the productivity. In temperate forest, they found that rainfall was a key controlling factor on interannual variations of ecosystem productivity, and ET was less affected by the drought than carbon uptake at the annual scale.

Therefore, the lack of a soil water stress term in the MODIS GPP algorithm may result in significant productivity overestimation particularly during extreme

Fig. 9 Spatial patterns of annual net primary productivity (NPP) (a) and annual evapotranspiration (ET) (b) at the DBF catchment in 2001 (extreme drought year) and 2002 (moderate year). DBF, deciduous broadleaf forest.
drought. For this reason, there have been recent efforts to estimate soil water potentials from the shortwave infrared and near infrared bands from MODIS and integrate them into the GPP calculation (Xiao et al., 2004a, b). Leuning et al. (2005) and Pan et al. (2006) examined the possible benefits of modifying the MOD17 algorithm by adding a simple water balance scalar from the ratio of antecedent rainfall and potential ET data, and found that it significantly improved the predictions in a savanna ecosystem and a coniferous forest, respectively.

Interannual phenological changes can possibly explain some portion of interannual patterns of carbon uptake in the model (Nemani et al., 2002). During the period of this study, about 1-week early leaf-on of MODIS LAI in 2002 and 2003 could explain slightly higher annual MODIS GPP and NPP estimates (Fig. 12b). Interannual variations of carbon uptake by phenological changes cannot be simulated well in this study because the current RHESSys version adopts a constant, prescribed phenology. In spite of this fact, interannual phenological differences in MODIS LAI are not enough to explain the severe drought effect in 2001 clearly shown in ring increment data (Fig. 8). We could not find any phenological anomaly in 2001 by two severe drought events during early June and late September (Fig. 12a). Usually, soil water stress is not a main factor determining phenological changes in trees (White et al., 1997). Therefore, drought effect is not effectively captured in tree-based ecosystems with only FPAR and LAI values that represent temporal phenological patterns, whereas drought effects on grass-based

Fig. 10 Spatial patterns of daily shortwave downward radiation (a), daily average temperature (b), rootzone soil water contents (c) and water table depth (d) at the entire watershed on July 1, 2002.
(semiarid) ecosystems can be easily detected by their phenological changes (Huete & Didan, 2004; Cheng et al., 2006).

We found another potential explanation of productivity overestimation from subspatial and temporal variability at the MODIS scale. Soil moisture variability at footprint scales is usually characterized as increasing positive skewness with decreasing mean soil moisture content, so that positively skewed asymmetric distribution functions (e.g. \(\beta, \gamma \)) represent spatial variability better, particularly under dry conditions (Famiglietti et al., 1998, 1999; Ryu & Famiglietti, 2005). Furthermore, water and carbon processes respond nonlinearly to soil water stress below a certain critical point, whereas the VPD attenuation function in the current MODIS GPP algorithm was represented by its linear ramp effect (Heinsch et al., 2003, 2006; Zhao et al., 2005). For this reason, simply averaging subgrid variability of environmental water stress may underestimate the effect of severe drought due to the asymmetric nature of the spatial distribution of soil moisture along with its nonlinear effect on water and carbon processes (e.g. Band et al., 1993). Especially in mountainous areas, soil moisture can have significant subgrid variability at the MODIS spatial scale, mainly dependent on topographic variability and drainage within a pixel. Moreover, many mountainous forests are more vulnerable to drought because lateral water fluxes through shallow soil columns are dominant within the watershed system. This indicates the potential for overestimation of productivity especially during drought season by simply averaging subgrid variability of soil water contents. It would be useful to further explore the incorporation of subgrid scale variability.

Fig. 11 Spatial patterns of annual net primary productivity (NPP) (a) and annual evapotranspiration (ET) (b) at the entire watershed in 2001 (extreme drought year) and 2002 (moderate year).
correction factors to address these issues of bias during drought conditions in important mountainous forest ecosystems.

Aggregated classification and parameterization could also be a potential source of error due to suppression of heterogeneity at the subgrid scale even though the MODIS land cover products are fairly accurate around this study area. The Biome Parameter Look-Up Table (BPLUT) related with MOD17 algorithm (Zhao et al., 2005) follows the C3 MODIS land cover classification (MOD12Q1, C3), which simplifies the biome types within an unit pixel. Most of this study area is classified as ‘mixed forest,’ but about 65% of this study area is classified as DBF. The BPLUT of ‘mixed forest’ is not weight averaged by subgrid vegetation compositions. Therefore, the wide range of the vegetation composition was treated with a single set of modal biome parameters. Pan et al. (2006) suggested that inaccuracy of annual MODIS NPP estimates was possibly related with simple parameterization of radiation use efficiency for diverse deciduous forests from comparing MODIS NPP estimates with forest inventory and analysis (FIA) data. However, this is an intrinsic problem for the global application of the MODIS algorithm (Heinsch et al., 2006).

Acknowledgements

This paper was supported by the ‘Sustainable Water Resources Research Center of 21st Century Frontier Research Program’ (Grant code: 1-8-3), ‘Eco-technopia 21’ project from the Ministry of Environment, ‘BK21 program’ from the Ministry of Education and Human Resource Management of Korea, and ‘Long-term ecological research under changing global environment’ project from the Korea Forest Research Institute. We are very grateful to anonymous reviewers and Dr Conghe Song for valuable comments to improve the manuscript.

References

Asner GP, Scurlock JMO, Hicke JA (2003) Global synthesis of leaf area index observations: implications for ecological and

