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Abstract

In this paper we compare two approaches (model formulations) for find-
ing simple explicit numerical solutions for the electromagnetic fields gen-
erated by three-dimensional ocean currents. The first approach, based
on the induction equation, is the relevant one when dealing with realistic
time-dependent ocean current and conductivity fields. In many cases, this
approach will, however, be computationally unfeasible due to the small
time steps required for numerical stability. The second approach is based
on the electropotential equation and requires quasistasis. The numeri-
cal solutions using this approach converge quite quickly, suggesting that
this method could be viably employed to calculate the fields due to high-

resolution three-dimensional (quasisteady) ocean circulation.



1 Introduction

In the ocean, salts such as NaCl exist largely as dissociated ions. As ocean
currents advect these ions through the earth’s magnetic field, Lorentz forces on the
ions lead to the generation of electrical fields, electrical currents, and secondary
magnetic fields. Electrical forces tending to change the ocean flow exist but are
negligibly small.

In recent years it has been realized that ocean circulation and its variability
play a crucial role in determining the earth’s climate and its fluctuations. Since
the ocean currents induce magnetic fields, it has been pointed out that a wealth
of ocean current (and hence climate) proxy data may be distilled from the ex-
isting geomagnetic record (Stephenson and Bryan, 1992; Tyler, 1992; Winch and
Runcorn, 1993; Tyler and Mysak, 1993, 1994, 1995b). There is thus a strong mo-
tivation for better understanding the electromagnetic fields generated by ocean
currents.

Although a reasonable amount of theoretical work has been done on this
subject (Longuet-Higgins et al., 1954; Sanford, 1971; Chave, 1983; Chave and
Luther, 1990; Tyler and Mysak, 1993, 1994, 1995b), analytical solutions can only
be found for idealized conductivity and current velocity fields. Thus numerical
techniques are necessary to treat more realistic cases (Sanford et al., 1990).

An important numerical study has been published by Stephenson and Bryan
(1992). They found solutions for the 2-D electromagnetic field induced by the an-
nual mean and first annual harmonic of the global ocean circulation at two-degree
resolution. In their approach, they solved a 2-D equation that is based on the
time-independent induction equation using an under-relaxation technique. They
used depth-integrated forms of the conductivity and ocean current velocities, and
further, they employed only two conductivity values (land, ocean). These idealiza-
tions were made despite the facts that baroclinic currents are often more efficient

than barotropic currents as generators of magnetic fields, and that variations in



conductivity in the oceans and ocean sediments are significant. Still, there are
at least two reasons for their approach. First, even though the magnetic fields
induced by baroclinic currents as measured within the water are dominant, the
vertical component of the induced magnetic field measured above the sea-surface
may be largely dependent on only depth-integrated forms of the velocity and con-
ductivity. Second, and perhaps most significant, the explicit numerical scheme
they used does not appear to converge quickly. A more realistic global 3-D model
using a similar numerical scheme does not currently seem feasible. Stephenson
and Bryan have suggested that other algorithms should be investigated.

Before entering into more complicated implicit methods, it is natural to in-
vestigate whether other formulations using explicit methods can be used feasibly.

The main purpose of this paper is to show that an explicit numerical approach
based on the electropotential equation (rather than the induction equation) can
be used easily and efficiently in calculating the steady-state ocean-induced elec-
tromagnetic fields. We start, however, by presenting a numerical model based
on the time-dependent induction equation in §2. We run this model with steady
forcing and obtain results for a test case that are compared in §4 with results
obtained from the electropotential equation-based model presented in §3.

The induction equation can be solved numerically to give a complete de-
scription of the time evolution of the electromagnetic field due to general time-
dependent ocean conductivity and flow. The basic problem—with explicit numer-
ical schemes, at least—is that very small time steps are required for numerical
stability, which make even integrating to a steady-state quite expensive. The
steady-state electropotential equations may, in contrast, be solved much less ex-
pensively. From the steady-state electropotential equation and the use of addi-
tional assumptions, the steady-state magnetic field may be obtained. We return

to a more specific comparison between these two approaches in the final section.



2 Approach Based on the Induction Equation

In Tyler and Mysak (1995a), we used principles from General Relativity theory
to derive the set of equations that apply for observers in a rotating (accelerating)
reference frame studying the electrodynamics of a material medium moving with
velocity relative to the rotating frame. For the particular application where the
material medium is the ocean moving with relative velocity u, in the rotating
frame of the solid earth, and considering typical parameter values for the electric
properties of the terrestrial system, we found that to a very good approximation

the following equations of electromagnetism can be used:
V xE = §;B, (1)

V.B =0, @

V x B = pod, 3

)
)
V-(eE——]%ﬁxB)zpe, 4)

J =0(E+u, xB), (5)
where u, is the ocean current velocity relative to the solid earth (with solid-body
rotation velocity u,), and it = u; + u(1 — N?) in which the index of refraction
N is defined as N = (u,€,)}/%. The other symbols are standard and represent the
electric field strength (E), magnetic flux density (B), electric current density (J),
electric volume charge density (pe), the electric conductivity (¢ ~ 3 — 5 S/m for
seawater), electric permittivity (e = e€,€,, where €, is the relative permittivity of
the material (= 80 for seawater), and ¢, = 8.854 x 10712 F/m is the permittivity
of free space), and the magnetic permeability (¢ = p,io, where p, is the relative
magnetic permeability (taken to be = 1 in this study) and g, = 47 x 10~7 H/m
is the magnetic permeability of free space).

The fact that (1)-(3) and (5) retain a form similar to their inertial-frame

forms depends both on the small rotational accelerations as well as the electric

properties of the terrestrial media (see Tyler and Mysak (1995a) for more details).
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Using (1)-(3) and (5), we can construct a form of the induction equation that

is also similar to the inertial-frame form (Tyler and Mysak, 1995a):
0B =V x (u. xB)- VK x (VxB)+ KV’B (6)

where K = (u,0)7"! is the magnetic diffusion coefficient. Given an ocean-current
field, u, (from now on we will leave off the subscript) and conductivity field, (6)
is used to solve for the magnetic field B.

Due to (2), ocean-induced magnetic fields will decay to zero away from the
oceanic sources. To satisfy this condition approximately in the numerical model,
we let B = F + b where F is the specified earth’s main magnetic field and b is
the ocean-induced component, and we impose Neuman boundary conditions on
b on the faces of the 3-D finite-difference Cartesian grid domain. The domain is
chosen such that the Lorentz forces u x B are small near the boundaries.

Here we will use a simple explicit numerical solution method. All variables are
defined at every grid point. We represent the time derivative using FIT (forward
in time) differencing. We use a seven grid-point representation for the Laplacian
terms and a CIS (centered in space) discretization scheme for first-order spatial
derivatives (for numerical stability, we use upstream differencing for §,B at the
air/water conductivity interfaces). For numerical stability, the time step is chosen

to satisfy

At < minimum { (A2)" + (Ay) + (Az)—z)—lﬂ ((Az)2 4 (Ay)* + (Az)—z)_l }

[u] ’ 4K
(7)
where Az, Ay, Az are the grid-point spacings.

Given an initial condition b(z,y, z,¢ = 0) and specified K, u, F, forward time-
stepping can be used to obtain the magnetic field B = F+b at later times. From
B and equations (3) and (5), we can also obtain J and E.

For simple illustration, and for comparison with the results to be presented in

the next section, we apply the model to the following specific case of a small-scale



gyre under a uniform vertically-directed main field F = F,% (which will be fast
to compute): We use uniform horizontal and non-uniform vertical grid spacing

which is defined by the stretched vertical coordinate z(k) as
s = B Azlumosinh[B(k — k)] ®)
The grid spacing (obtained through differentiation of (8) with respect to k) is
Az = Az|s=0 cosh[B(k — ko], (9)

where Az|,= is the thickness of the layer at the sea surface, 8 is a stretching
parameter, and k, is the level index corresponding with the sea surface. For this
case, we choose Az|,=o = 100 m, 8 = 8/kmas, and k, = 12. Also, we use a grid
domain of 15%x15 points in the horizontal with 20 vertical levels (kmqr = 20).
We choose the horizontal grid spacing Az = Ay = 10® m. Figure 1 shows the
mapping between the physical vertical coordinate and vertical grid-point indices.
The 3-D array with indices i, j, k (Figure 2a) samples the 3-D physical domain
having coordinates z,y, z (Figure 2b). We will present all our results in the index
space shown in Figure 2a since this will better show the area of interest. The
frequency of sampling is highest near z = 0 where the greatest velocity shear and
conductivity changes occur. The model accepts an arbitrary conductivity field.
For the present sample demonstration, we will consider K to have only 3 values:
within the ocean (=5 x 10° m< z < 0), K = K, = 2 x 10° m?/s; in the air
(2 > 0), K =10% x K,; in the sediments (z < —5 x 10® m), K = 10 x K.

We consider a velocity field that is everywhere zero except within a layer —100

m < z < 0 where the z and y components have the form

fi

4= maz(fi) (10)
and ;
v= -y (111)



with

fl - COS( yﬂ'y )sin(;y )Te—1/18(7/xmaz)2, (12)
max max
fo= cos(;m )sin(yﬂ-y Jre~1/18(r/emaa)” (13)
max max

and r = \/(x — DTmaz)? + (Y — .5Ymae)?. In the case considered here, Zpe, =
Ymaz = 15. The velocity components u,v have been normalized such that the
maximum values are equal to 1 m/s. The gyre velocities are depicted in Figures
3a,b. We take the initial condition b(t = 0) = 0.

In Figure 4 we show the normalized z-component of the induced horizontal
magnetic field (b,/F,). To indicate the approach to steady-state, the mean root-
squared values of b,/ F, as a function of time are shown in Figure 5.

The numerical model we used was written in Matlab and was run on an IBM
RISC 6000 workstation. The model took 1.7 s of cpu per time step. The value
for At in this case was At = 4.8 x 10™* s. In obtaining the solution shown in

Figure 4, a total of 21359 iterations (3.6 x 10 seconds of cpu) were used.

3 Approach Based on the Electropotential Equa-
tion

Under steady state conditions, equation (1) gives V x E = 0. Hence, we can
write E = V1, where ¢ is a scalar electropotential function. Then, taking the
divergence of (5), noting that V -J = 0 by (2) and assuming |V - (cu X b)| <<
|V:(cuxF)| (the results must be checked afterwards to validate this assumption),

we have after some rearrangement of the terms,
V. (eVyp)=-V.(cuxF) (14)

which for specified o, u, F involves only the unknown .
There are many numerical methods for solving (14). Here, we use sequential

relaxation due to its simplicity and generality. We first write (14) as

V2¢=——§Vo(auxF)——VIna-V¢. (15)
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As in the last section, we use a seven grid-point representation for the Laplacian
term and a CIS discretization scheme for the first order derivatives. An iterative
scheme for solving (15) is then

a

Visk = Vhie t N a2 T T (BT T (BT

where R is the residual

R (16)

R=V2¢+§V-(GUXF)+Van-V¢, (17)

t,7, k refer to the 3-D grid-point indices, n is the iteration number and « is the
relaxation coefficient satisfying 0 < o < 2. We use a grid domain in which the
boundaries are far enough away from the forcing centers such that the outward-
directed electric field vector magnitude is small on the boundary, allowing us to
impose Neuman boundary conditions on % at the boundaries.

Once ¢ is found, E is obtained from E = V1. Then, J can be found using
Ohm’s law (5), with the approximation u X B &~ u X F (as stated earlier, the
subscript on the velocity appearing in (5) has been dropped). With J known, we
can solve for b in the following way: First note that by assumption, F involves

only electrical currents in the earth’s core; hence, outside of the core, (3) requires
VxB=Vx(F+b)=Vxb=ypJd. (18)

We next take the curl of (18). After using appropriate vector identities (and

invoking V - b = 0), we obtain the vector Poisson equation
Vb = -,V x J. (19)

In the Cartesian domain, (19) is easily separated into three scalar Poisson

equations:
Vb, = —po(V x J) - 2, (20)
V2, = —po(V x J) - 9, (21)
V2, = —uo(V x J) - 2, (22)
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which we solve using boundary conditions and relaxation techniques identical to
that used in solving for . We find solutions for forcing due to the ocean gyre
described in the last section. Cross-sections of the solutions for % and b, are
shown in Figures 6a,b. The convergence of the residuals are shown in Figures
7a,b. The approximation |V - (cu x b)| << |V - (cu x F)| was justified in this
case since the values of |V - (cu X b)| were found to be at least two orders of
magnitude smaller than the values of |V - (cu x F)|.

We see by comparing figures 4 and 6 that the b, calculated using the electropo-
tential equation is in fact similar to that calculated using the induction equation,
with b, from the induction equation having a magnitude slightly smaller due to
the fact that it has not completely reached steady state.

The numerical model we used was written in Matlab and was run on an IBM
RISC 6000 workstation. The solver for ¢ took 0.26 s of cpu per iteration. The
solver for the b terms took slightly less time (0.24 s per iteration) due to a few
less terms in the equation that needed to be calculated. To obtain the solution
in Figure 6a, 30,000 iterations were used, and to obtain the solution shown in
Figure 6b, 1007 iterations were used. The total cpu time used was 8.0 x 103
seconds. This can be compared with the induction equation solution which, as
stated in the last section, used 3.6 x 10* seconds of cpu. Other experiments
we have conducted indicate that the efficiency of the potential-based approach
over the induction-based approach is even greater when we use larger-scale ocean

forcing features with a smaller aspect ratio (ratio of depth scale to length scale).

4 Discussion

In this paper we have investigated two simple explicit methods for numerically
calculating the electromagnetic fields generated by ocean currents. The results
we have found indicate that a model based on the electropotential equation ap-
pears to be computationally much less expensive than a model based on the

induction equation. The electropotential equation, however, is only applicable to
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a quasisteady balance between the electromagnetic fields and the ocean current
and conductivity fluctuations. Solving the steady-state induction equation using
an explicit relaxation scheme as done for ¢ is also expected to converge slowly
since, as described in Stephenson and Bryan (1992), the explicit time-stepping
and relaxation methods are quite similar for the problem considered here with
a step-function forcing. That is, the small At required (due to the combination
of the large diffusion coefficient K and small Az) in the time-stepping approach
would translate in the relaxation scheme as a great number of iterations required
to attain convergence.

These results should be regarded with caution, however, since comparison
between the two approaches is not straightforward. For example, if the main in-
terest is in the magnetic field (which in the electropotential-based model involves
calculations using gradients in the electropotential field), the convergence criteria
may need to be more strict than the criteria used in the induction equation-
based model (which calculates the magnetic field directly). The importance of
these considerations will depend on the particular application.

A few clear advantages of the electropotential approach can be pointed out:
The induction-equation approach requires time-stepping three equations (one for
each of the three magnetic field components) simultaneously. The electropotential
approach requires the solution of four equations (for the electropotential ¢ and
the three magnetic vector components). However, unlike the induction-equation
approach, the electropotential approach gives uncoupled Poisson equations for
the three magnetic components. Hence, not all three need to be solved for,
or, the three could be solved for in parallel once i has been found. Hence, if
the main interest is in calculating only the vertical component of the magnetic
field, for instance, the electropotential approach involves solving two uncoupled
Poisson equations while the induction-equation approach involves time-stepping
three coupled equations.

Furthermore, if our interest is only to have solutions for b above the sea surface



(where observations are made), the most efficient strategy might be to solve for
¥ and then b, only. Treating the region above the sea surface as an insulator, the
magnetic field is derivable from a scalar potential (V xb =J =0, hence b= V¢
where ¢ is a scalar potential). Then, since Vb = 0, V2¢ = 0, which can be
solved in the regions 0 < z given the boundary conditions 9,¢(z = 0) = b,(z = 0)
and 0,¢(z — o0) = 0. Using this method we would obtain b(0 < z) after se-
quentially solving three scalar Poisson equations—one of which would be solved
in the smaller domain 0 < z. This should invariably have advantages over the
induction-equation approach which requires the simultaneous solution of three

coupled equations over the entire domain.
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Figure 1:

Mapping of physical vertical coordinate and vertical array index.

Figure 2:

Model domain in index space (a) and physical space (b).

Figure 3:
Ocean gyre velocities. The z (increasing i) component of the velocity u is shown
as sections through the domain (a) and an arrow plot in the horizontal plane is

shown in (b). Units in (a) are m/s; maximum value is 1 m/s.

Figure 4:
The induced magnetic field b,/F, (dimensionless) from the model based on the

induction equation.

Figure 5:
Mean of the root-squared values of b,/F, as a function of iteration time under

the model based on the induction equation.

Figure 6:
Cross-section of the electropotential ¢/ F, (V m™'T~!) (a) and induced magnetic
field b,/ F, (dimensionless) (b) from the model based on the electropotential equa-

tion.

Figure T:
Convergence plot showing mean magnitude of the residuals (for the 1 iteration (a)

and the b, iteration (b)) from the model based on the electropotential equation.
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