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Abstract

Using the induction equation, we investigate the generation of electro-
magnetic fields by the oceanic advection of ions through the earth’s mag-
netic field. In this report, solutions are presented for a linear induction
equation for the magnetic flux density vector which involves prescribed
time-independent ocean current and conductivity fields. Once the mag-
netic flux density is known, the electric field and electric current density
are easily obtained by differentiation.

Solutions are given for several examples of idealized flow, including: 1)
Vertically and horizontally sheared plane-parallel flow with depth-dependent
conductivity; 2) A simple Stommel circulation gyre; and 3) Symmetric
gyres. The results indicate that typical ocean current patterns induce
magnetic fields that are of detectable magnitudes even far outside of the
water. Thus it is concluded that observations of the earth’s main mag-
netic field could be significantly affected by the ocean circulation. Also,
the ocean-induced magnetic fields should be especially important in the
earth’s observed secular (interdecadal and longer) variation since even
small-magnitude fields generated by the ocean currents may vary on time

scales much shorter than those of inner-earth processes.
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1 Introduction

In a series of earlier reports (Tyler and Mysak, 1993, 1994a, 1994b) we examined
the potential for using geomagnetic data in ocean and climate studies. It is
well known that the ocean currents induce electromagnetic fields (e.g., Longuet-
Higgins et al., 1954; Sanford, 1971). If the magnetic fields induced by the moving
ocean reach geomagnetic observation sites with detectable magnitudes, then the
geomagnetic record may contain important information about past and present
ocean circulation.

A review of earlier research on and a description of the basics behind electro-
magnetic induction in the ocean is given, for example, in Filloux (1987), Tyler
and Mysak (1993) and the references therein. In brief, seawater contains ions
which, as they are advected by the ocean currents through the earth’s background
magnetic field, are subject to a Lorentz force which tends to induce electrical cur-
rents perpendicular to the ocean flow. In the case of a finite-width ocean surface
current, electrical currents driven by the Lorentz force in the surface layer short-
circuit through the deeper water, creating a closed loop of electrical currents and
a consequent magnetic flux through this loop. The question that naturally arises
is whether this magnetic field is detectable at geomagnetic observation sites.

Although the basic physics behind electromagnetic induction in the ocean is
well established (in fact, most modern ocean current meters operating in a va-
riety of ways rely on these principles), there has been little attempt to describe
the electromagnetic fields due to realistic three-dimensional ocean current and
conductivity fields. Particularly lacking is a description of ocean-induced elec-
tromagnetic fields observed at points outside of the ocean. Such a description,
however, is of primary interest to us since most of the geomagnetic record has
been taken at land observatories or by satellites outside of the ocean.

The main purpose of this paper is to present a number of analytical solutions

for the magnetic field due to idealized ocean current and conductivity fields which



retain detectable magnitudes far away from the ocean. In so doing, we can then
argue, as hypothesized above, that the geomagnetic record is likely to contain
information about the past and present ocean circulation and climate (since the
transport of heat by the ocean currents strongly affects climate, e.g., see Weaver
and Hughes, 1992).

The motivation for trying to connect the ocean circulation to geomagnetic
records is that the geomagnetic record is in many ways superior to traditional
oceanographic data sources. Compared to most forms of oceanographic data, the
coverage of magnetic data in time and space is relatively good. In particular,
the magnetic coverage is quite good in areas like the Arctic where historically
there has been poor oceanographic data coverage. Also, since the low-frequency
magnetic fields will reach through sea ice essentially unchanged, satellite coverage
of the magnetic field over polar regions (such as taken by MAGSAT) may offer a
synoptic view of the ocean dynamics that would be prohibitively expensive to du-
plicate using traditional in situ measurements in these ice-covered regions. (For
more on the potential advantages of using geomagnetic data for ocean circulation

studies, see Tyler and Mysak (?).)

An outline of this paper is given in the preceding table of contents. Through-
out this paper we rely heavily on concepts established in magnetofluiddynamics.
Since we expect many readers from oceanographic backgrounds will be unfamiliar
with these concepts, we have elaborated on the latter where possible. Conversely,
readers entirely unfamiliar with rudimentry ocean dynamics may wish to preview

the discussion section.

2 Induction Equation

In Tyler and Mysak (1994a, 1994b) we derived the set of equations that apply for
observers in a rotating (accelerating) reference frame studying electrodynamics

of a material medium moving with a velocity relative to the rotating reterence
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frame. It was assumed that the rotation velocities and velocity of the material
medium were much smaller than the speed of light. Considering, in particular,
the material medium to be the ocean moving with relative velocity u. in the

rotating frame of the solid earth, the constitutive relationships were written as

1

D =¢E - mfi x B), (1)
1 € .
= ZB — WU X E, (2)
where
il = ug + ue(l — N?), (4)

N = (p,€,)Y/? is the index of refraction, and the solid-body rotation velocity of
the earth is

ug = Qrcos g = Qrsin 44, (5)

with ) the rotation rate of the earth, r the radial coordinate, } the unit vector
in the eastward direction, ¢ the latitude and 6 the colatitude. (See Appendix A
for definitions of other symbols.) In the equations above, which are taken from
Tyler and Mysak (1994Db), lower-case letters were originally used for the electro-
magnetic vectors measured in the rotating frame to distinguish them from vector
measurements made in an inertial frame which were denoted with capital letters.
Since it is not necessary in this paper to make this distinction, we have used cap-
ital letters in the above equations with the understanding that all measurements
are made with respect to the rotating frame of the earth.
Maxwell’s equations in the rotating frame were given in Tyler and Mysak
(1994a, 1994b) as
V x E = -3,B, (6)

V-B=0, (M)



€ .
V(B - 571 x B) = s, (8)

1 € . € .
Vx(;:B—-FuxE)=8t(eE—muxB)+J. (9)

In deriving equations (1)—(9), we neglected gu_s[%u_c[ﬁ, ]ﬁc@g‘ﬂ, Ej—‘i and
N ‘2M{JEQL2 relative to 1.

When we consider typical parameter values describing the electric and mag-
netic properties of the ocean and we avoid very high frequency phenomena (with
periods much less than a minute), equation (9) can be approximated by (Tyler
and Mysak, 1994a, 1994b)

V xB = pyd. (10)

Also, it can be easily shown (e.g. Tyler and Mysak (1994b)) that for the ocean
conditions considered here, the first term on the right-hand side of (3) representing
charge advection can be neglected.
Upon combining (6), (10) and the simplified equation (3), we obtain the in-
duction equation
0B =V x[uxB-KV xB] (11)

where K = (op,)~! and u is the relative velocity of the ocean water (= u, in

equations (3) and (4)). Using the vector identities
VxV xB=V(V-B)- VB, (12)
Vx(uxB)=(V-Blu—(V-uyB+ (B:-V)u-(u-V)B, (13)

and equation (7), equation (11) can be written (assuming the ocean is also in-

compressible) as
DB=8B+u-VB=(B-V)u+KV’B+ KVlno x (V x B). (14)
Writing (14) out for the three components, we have

0:B; + u0,B; + v0,B; + w0,B, = B,0;u+ B,0yu+ B,0,u
+ Ko,0.B; + K6,0,B; + K0,0,B,
+ KOylno(0;By —0yB;) — K0,lno(0,B; — 0:8,)
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(15)

0By + u0, B, + v0,By + w0,By = By0v+ B,0,v+ B,0,v

+ Ko,0.B,+ Ko,0,B, + K0,0.B,
+ KO;lno(0,B; — 0.By) — K0,Ino(0,B, — 0,B,)
(16)
0:B, + u0.B, + vo,B, + w0,B, = B,0,w+ B,0,w+ B,0,w
+ Ko,0,B,+ Kd,0,B, + K0,0,B,
+ KO0,Ilno(0,B, — 0;B;) — KOylno(0,B, — 0,B,)

(17)

A further discussion of the induction equation, including its representation in
other coordinate systems can be found in Tyler and Mysak (1994b). In the general
problem of magnetofluiddynamics (MFD) (also called magnetohydrodynamics
(MHD)), the induction equation (11) is coupled with other equations describing
the fields for the conductivity ¢ and fluid flow u. In particular, an electrical
force J x B on the flow will require that the electrodynamics and fluid dynamics
be solved for simultaneously. In the case here of ocean induction, however, the
electrical forces on the fluid are negligible and the flow field is taken as prescribed.
In fact, for typical values of B and J (that are justified later in the text), we can
show that the electrical force on the fluid will typically have a magnitude of about
|J x B| ~ 4.5 x 1071° N/m3. This would be roughly equivalent in magnitude to
the pressure gradient force due to a 0.5 um sea surface displacement difference
between two ends of a large ocean basin such as the Pacific! More typically, such
displacements approach a meter. When also considering other dominant forcing
mechanisms in the ocean, the electromagnetic forces are clearly negligible and the
induction equation can be taken as a differential equation for one vector unknown

(B), with prescribed K, o and u.



Many useful analogies can be drawn between the terms in this equation and
similar terms observed in the vorticity equation of fluid dynamics. The analogies
are important since they can suggest useful analytical and numerical techniques
that have been developed in fluid dynamics. It should be kept in mind, though,
that the physical processes of electromagnetic induction and fluid dynamics are
quite different and too strict of an adherence to these analogies can be misleading.

The term on the left-hand side of (14) is the familiar total rate of change of
the magnetic field B. The first term on the right-hand side is analogous to the
stretching/tilting term of fluid dynamics. When the conductivity is uniform, the
last term vanishes and the second term can be thought of as a diffusive term.

When ¢ is not uniform, the Laplacian term describes only part of the magnetic
diffusion, the rest being contained in part of the last term. A closer analogy with
fluid dynamics arises if we write (14) in the following flux form (in Cartesian co-
ordinates) which can be derived directly from (14) upon using the non-divergence
of both u and B:

OB = V-{uB-B,u+KVB, - Kj,B}&
+  V-{vB-Bu+KVB, - Kj,B}j
+  V-{wB-B,u+KVB, - Kj,B}3.
(18)

Equation (18) gives three scalar equations—one for each of the components of B.
Using the equation for B, as an example, we see that the time rate of change of
B, is described by the divergence of the vector quantity in brackets. Also note
that a diffusion term V - (K'VB,) can now be clearly identified. Still, while we
have isolated a ‘diffusion-like’ term, it is somewhat unsatisfactory that the last
term K0,B in the bracketed expression contains both K and B,. If an analogy
with diffusion is desired it might be more meaningful to resort to an anisotropic

description of diffusion. The B, equation, for example, can be rewritten as
0B, =V . -{wB—-B,u+ KVyB, — K0,By}z. (19)
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To interpret the terms in (19) consider a closed volume. We see that the time
rate of change of B, in the volume depends on the following (taking the terms on
the right-hand side of (19) in order):

1) Stretching/tilting due to gradients in the vertical velocity w. This
will involve a coupling with the other magnetic components. For
example, magnetic fields in the horizontal plane can be tilted by
w to give B,;

2) The net advection or flux of B, into the volume due to u;

3) The horizontal diffusive flux of B, into the volume;

4) A diffusive coupling with the other magnetic components.

We note that the last term in (19) now does not explicitly contain B,. This
enables us to find solutions to a simplified equation, as will be shown in §4. First,

however, we will obtain in §3 exact solutions to the induction equation.

3 Exact Solutions for Steady Idealized Flow

3.1 Ocean Surface-Intensified Currents with Horizontal
Shear in an Infinitely-Deep Ocean

Consider an infinitely deep ocean in which the ocean current system depicted in

Figure 1 is given by the real part of
u = y,eMtueg for 2<0, (20)

where u, is the maximum velocity at the surface, A is the wave number of the
cross-flow shear, and u~! is the vertical decay scale. We consider also a conduc-
tivity that is zero outside of the water and decays exponentially with depth from
the surface. We thus have

0__{ o,”* for 2<0

0  forz>0 (21)

where 47! is the conductivity vertical decay scale.
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The reason for including the depth decay in o is two-fold. First, since for most
oceans the temperature decreases with depth, the conductivity also decreases with
depth, with a magnitude about twice as great at the surface as compared to that
at the bottom (e.g. Filloux, 1987). Second, the charge recirculation may be con-
strained at depth as it would be in the realistic case of a finite- depth ocean (the

conductivity of the ocean bottom will be much less than that of sea water).

For simplicity, we first consider a uniform background magnetic field with
the northward and vertical components Fy, F, respectively. Since there are also
no variations assumed in u or o along z, from (15)-(17) we see that the ocean-
induction occurs only along = and we have By = F,, B, = F,. Then, equation

(15) with no time dependence becomes
0,0,B, + 0,0,B, — 8,10 08, B, = -%(m«; + uF,)evrus, (22)

We will seek solutions for (22) with a y-dependence of the form e*¥ similar
to the forcing on the right-hand side of (22). Hence, if we let B, = Z(z)e' in
(22) and divide through by e**¥ we obtain

7" — 42 — N7 = —%(i/\Fy + uF,)e*. (23)

We can use the appropriate Green’s function to solve (23) in the domain
—o00 < z £ 0. We first put (23) in a self-adjoint form by multiplying through by

e~ and combining derivatives. This gives

d d u
—(e~7"" — —Ne 7 = —(s 2 gk
e — Z)-MNeZ (tAF, + ,qu)Koe (24)

where K;! = po,0(z = 0) = ,0,.

We must solve (24) subject to two boundary conditions. First, we require
Z(z = —00)=0 (25)

(the ocean can induce no magnetic monopoles). Secondly, in order to have no

charge flow across the ocean/air interface we require
pod - 2=(VxB):-2=0 (26)
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which, since 0, = 0 for the geometry of this problem, requires
0yBy(z =0) =1)\B,(2 =0) = 0. (27)
For non-vanishing A this can only be satisfied if
Z(z=0)=0. (28)

To solve (24) subject to (25) and (28) we construct the following Green’s
function (see appendix of Tyler and Mysak (1993)):

42263 sinh Qf —00<2z<Z¢€
G ; 29
(=€) = ,3{ smh(éz:)ez€ £<2z<0 (29)
where 8 = (72 + 4A%)'/2,
Then, the solution of (24) is given by the integral
0
Z = / G(z | €)(~iAF, — uF, )Fe“edﬁ, (30)
which upon integration gives
By (1 _ o(HB+u)z — (T2 +n)2
2(s) = —(INF,+pF)e2e? (Lot 77 1-c
K, B T+B8+2 y—B+2u
. Uo 2 . ,H 1 (J_-té_*_#)z\
(tAFy + sz)Ko 3 smh(22) (—7 e 2Ne 2 ) .
(31)

The solution for the induced magnetic field B, is then given by the real part of

the following expression:
B.i = Ze™3, (32)

The contribution from the first term on the right-hand side of (31) can be
thought of as due to electrical sources above the observation point while the sec-

ond is due to sources below. The solution (31) is shown plotted in Figure 2 for

oo P e Ao AT L s T +h
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next example, the magnetic induction is due to electric currents that move to
the left of the current velocity near the surface where the velocity is strong, and
recirculate through the deeper water. The maximum vertical electric currents
occur where the surface velocities are minimal. While the induction is predom-
inantly due to forcing by the vertical component F,, the horizontal component
F, induces a field that is much weaker (by two orders of magnitude) and out of
phase with the F, induction, as can be seen in Figure 3. The J and E fields will
be discussed more fully in the next example.

We note that this calculation produces a magnetic field that vanishes outside
of the water. This is due to the fact that we have assumed that the ocean currents
extend to infinity in the z-direction with no along-flow variations. In reality, the
special geometry producing this cancellation of the magnetic field outside of the
water does not occur and we should expect that there will be substantial leakage
of the magnetic field into the air, with the returning flux showing a new decay
scale that is dependent on the finite length (as well as the width) of the ocean

current pattern.

3.2 Baroclinic Ocean Currents over an Insulating Seafloor

In contrast to the previous section, we now consider a slightly more realistic
example in which the conductivity and velocity can still be written as in (20)
and (21) but now it is assumed that below 2 = —H we have a motionless and
insulating sediment layer (where u = 0,0 = 0). The ocean domain therefore is
—H < 2 £ 0. In this model we can consider pure baroclinic modes if in u, u
is allowed to be complex, i.e. u = inm/H where n is an integer, and we take a
linear combination of e*#* and e™**.

For some special applications such as the case of a fresh layer over a cooler
saline layer, we could consider a conductivity profile that does not decrease mono-
tonically with depth, which can be realized by taking v to be complex in (21).

This conld acenr sinee eandnetivity increases with temperature and salinitv. while
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the water density decreases with temperature but increases with salinity. Hence,
although most of the ocean is stably stratified, this does not imply that conduc-
tivity always decreases with depth. However, below we only consider v to be
real.

Mathematically, the difference between this and the last problem is that the
boundary condition B,(z — —o0) = 0 is replaced by B;(z = —H) = 0.

The solution is again obtained by the use of Green’s functions. Here, though,
the integral over the appropriate Green’s function has been solved for plotting
purposes using the Symbolic Math toolbox of Matlab. The solutions obtained,
while still analytical, are quite long and we have left them in the prograinming
format that was used to produce the plots to be discussed. Thus, the expressions
for Z and Z’ are given in Appendix B.

The solution for the magnetic field is given by
B, = Ze™, (33)

and using (10) and (3) (with the charge advection term neglected, as discussed
in §2) we then obtain the following solutions for the electric current and electric

field:

J, =~ 7, (34)
Fo
J, = Az (35)
E, = J,[o + u,e**F,e'™, (36)
E, = J.|o — u,e’*F e, (37)

In Figures 4 through 9, we plot the solutions (33)-(37) for various values of
the flow and conductivity parameters. In each of the cases we have used the
following parameter values typical of mid-latitude background magnetic field and
ocean conditions: F, =3 x 1075 T; F, = =3 x 10™° T; u, = 1 m/s; H = 5 x 103
m; A = 1/(500) km~1;0, = 5 S/m. Note we have taken the velocity amplitudes to

be of unit value (1 m/s) for convenience, as 1n §3.1. For the more typical velocity
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of .1 m/s in the open ocean, the solutions shown in these figures would have their
magnitudes divided by 10.

In each of the Figures 4—9 we have plotted the velocity (solid) and conduc-
tivity (dashed) profiles in (a), and in (b)—(c) we have plotted various induced
fields which are either in phase (solid) and out of phase (dashed) with the velocity
variations in the y direction. Hence, we see that the surface-intensified current
of Figure 4a induces a magnetic field (b) similar in form and magnitude to the
solution shown in Figure 2. The dashed line indicates the part of the magnetic
field out of phase with the velocity and is due in this case to F,. We see that
the F, induction is negligible, as was found in §3.1. In Figure 4c, we note that
the horizontal electric current arising from the Lorentz force in the upper layer
is completely compensated by a return current at depth, and in Figure 4d, we
observe that the vertical component of the electric current is both much smaller
and out of phase. It is important to note that the solution for the horizontal
electric field in Figure 4e is independent of depth. The implications of this will
be discussed later. Finally, in Figure 4f we see that the vertical electric field is
larger than the horizontal electric field. This vertical field is due to F,. Hence,
although the horizontal background field components of F' are not, in the cases
considered here, effective at creating electric currents and magnetic fields, they
do create sizable vertical electric fields.

In Figure 5 we observe that when the flow and conductivity is uniform with
depth, the horizontal electric currents J, and magnetic field B, produced are
greatly reduced and out of phase with the velocity. In fact, the small F, induction
becomes dominant. The electric fields, however are increased.

In Figure 6 we show a baroclinic flow with uniform conductivity. The baro-
clinic mode is seen to be a highly efficient generator of magnetic fields and electric
currents. It was previously thought that measurements of Eg indicate the depth-
averaged velocity (or conductivity-weighted velocity) (e.g. Larsen, 1992; Larsen
and Sanford. 1985: Chave and Luther. 1990). Our results, shown in Figure 6e,
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however, indicate that baroclinic-type currents can produce horizontal electric
fields as strong as those produced by the barotropic mode. Certainly the strength
of the E, in the case we have solved and plotted here depends on our assumptions
of the e?*¥*+#* dependence of the velocity (with g = inw/H). The real part of
this expression describes a baroclinic current that is not only horizontally sheared
but also has a phase that varies horizontally. That is, it is a horizontally-sheared
baroclinic mode that tilts with depth. When we consider a non-tilting baroclinic
current (described, for example, by the real part of u = lue™¥(e#* + e7#%)) the
large electrical fields are not obtained.

In Figure 7 and 8 we show the effects of a conductivity profile which decays
with depth, and in Figure 9 we show induction due to a higher baroclinic mode

with depth-decaying conductivity.

4 Solutions of Approximate Equations obtained
by Scaling

The radius of the earth is over one thousand times greater than the average
depth of the ocean. The fact that induction within the ocean takes place essen-
tially within a thin shell allows us to make approximations that greatly simplify
the equations. In the next subsection (§4.1), we use such arguments to obtain the
solutions of an approximate set of equations for the horizontal magnetic fields.
Then in §4.2 we estimate the vertical magnetic component. Before doing this,
however, we will make some general comments about the notation and conven-
tions that we use below.

Unless indicated otherwise, we will work with a Cartesian coordinate system
with the components z (eastward) and y (northward) occurring in the horizontal
plane and z directed vertically upward. This convention (common in oceanogra-
phy) should be contrasted with the convention often used in geomagnetic studies

in which z is directed downwards, z is northward and y is eastward.
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In some cases it is convenient to split the observed magnetic field B into two

parts, namely,
B=F+b, (38)

where b is that part of B generated by the ocean currents and F is a background
field. All the vectors B, b, F have zero divergence.

Further, it is assumed that the electrical current sources of F are not located
in the ocean or ocean sediments and that b (due only to sources within the
ocean or sediments) is much smaller than F (|b|/|F| << 1). In the standard
interpretation, the sources of F are located in the earth’s core. Hence, according
to (10), outside of the core F is irrotational (V x F = 0) and hence using (12)

and noting the non-divergence of F, we have
VxVxF=-VF=0. (39)

The assumption |b|/|F| << 1 that we have taken as a working hypothesis de-
serves special mention. This is consistent with the view that the magnetic fields
generated by ocean currents are much smaller than the earth’s ‘main field’ (pre-
sumably due to sources at the earth’s core). This assumption certainly seems
reasonable in most cases (the magnetic fields, as we saw in the examples in §3
were typically tens of nanoteslas compared to the earth’s main field which is typi-
cally three orders of magnitude greater.) There may, however, be some important
exceptions to this assumption, as we will see in §4.2.4 when we discuss the effects
of changes in bathymetry. Also, non-steady fields may be quite large and per-
haps most importantly, self-excitation modes may exist due to the convergence
of conductivity transport at the poles, for example. The latter consideration is
beyond the scope of this paper.

As noted after (13), we assume the fluid is incompressible; hence
V.u=0. (40)

Also, vectors as well as operators appearing below with an H as a subscript

refer to the horizontal components (for exampie, ug = uz + vy and Vg(-) =
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0z(+)Z + 0y(+)9). In the cases where we are explicity setting w = 0 we will often

omit the H subscript on u.

4.1 Horizontal Components

Because of the aspect ratio of the ocean, vertical derivatives of the conductivity
(o) and velocity (u) fields will generally be much larger than the corresponding
horizontal derivatives. Hence, the dominant stretching/tilting term in (15) is
B,0,u. This term is much larger than the advection terms (on the left-hand
side) provided both H/L and W /U<< 1 where H, L, W, U, are the typical
scales for the ocean depth, length, vertical and horizontal velocities, respectively.
Since these inequalities hold for the large-scale ocean circulation, the advection
terms in (15) can be neglected. This is also true in the equation for B, but not
necessarily so for the equation for B, since the stretching/tilting term involves
w. For H/L<< 1 we also note that the dominant diffusion terms in (15), (16)
are those with z derivatives.

The diffusion time for the horizontal magnetic components will be of order
HL/K =~ 10® seconds or less. Since we are interested in low-frequency pro-
cesses, we consider B, and B, to be in a quasi-steady balance and we neglect
the time-derivative terms. Note, however, that the diffusion time for the vertical
component B, may be as large as £2/K and there will be cases, as we will discuss
below, where 0;B, is retained.

Under the above assumptions, equation (15) can be approximated by
0 = B,0,u + K9,0,B, — K08, 1n0d,B,. (41)

Similar arguments can be made to simplify equation (16) and the two approximate

equations for B, and B, can be written together as the following vector equation:
83(K62BH) - ""BzazuHo (42)
Below we wiil integrate (4Z) to obtain expressions 10r Dy and Jg, OUt NIsT
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we introduce some convenient notation. Let

which can be interpreted as a conductivity transport density cugy multiplied by
fo- The total (dimensionless) conductivity transport through the ocean column

of depth & is then

0
Ta = /ht,dz. (44)
Also, we define the vertical coordinate
— [ adz
= 45
*T 0 odz (45)

which ranges from s = —1 (at z = —h) to s =0 (at 2 = 0).

In Figure 10b we show an example of s calculated assuming the o profile shown
in Figure 10a. This example depicts a typical case of a warm shallow current of
high conductivity. The ocean below is motionless and has a conductivity slightly
greater than half its surface value. A low-conductivity sediment layer extends
from the seafloor (2 = —H) down to z = —3H. For an insulating ocean floor
h = H and when ¢ in the water is independent of depth, s is simply s = z/H.

To make our results comparable with those of others, we also define

td - K H (46)
where | p
* h ouygaz
= 47
UH ffh O'dz ( )

is similar to the notation introduced by Sanford (1971).

Equation (42) is integrated with respect to z to give

17~ T » T /D AT U o F SN (AQ\
. “4 N \ Z

- ~ 44 J ~ o~ v
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where C is an arbitrary vector function of z and y. We next divide (48) by K

and take the definite integral between z and zero, which gives, after rearranging,
01 2!
By =Bu(z,5,2=0)+ | = [ / B,d,udz — c] dz’ (49)

The vector C is difficult to estimate directly and it is preferable to give the
solution in terms of a different undetermined constant ABy = By(z = 0) —
Bu(z = —h). The C = C(z,y) in (49) can be taken out of the integral, and the

equation evaluated at z = —h; after rearranging, we obtain
ABg + (% (¥ /¥ B,,updz) d2'
C= ( oh dz’ ) . (50)
-h 'K

The vector C describes short-circuiting paths and in fact, C is essentially J,port /0
where J 450t is the shorting return electrical current density.

Suppose that electrical currents forced by the Lorentz force in areas of fluid
motion are completely compensated by return electrical flow elsewhere in the
water column or sediment layer such that the horizontal electrical current density
Jy integrated over depth A is zero. In this case, ABy = 0. This is probably a
reasonable assumption throughout most of the ocean. However, while realistic
solutions for By may be obtained assuming ABy = 0, calculation of B, does not
always allow this assumption (see §4.2).

In contrast to the last assumption, we could assume that no short-circuiting
occurs (at least through the region considered). This is assumption is realized by
setting C = 0. T'wo examples where this might be a good assumption are: first, if
the flow is barotropic and the conductivity is constant with depth (probably only
applicable to shallow well-mixed flow over a flat bottom—a very small percentage
of the ocean circulation); second, where there is a horizontal convergence (or
divergence) in u (or perhaps ou), Lorentz forces may force appreciable electric
currents along paths in the horizontal plane with little short-circuiting ocurring.

We can simplify (48), (49) and (50) by noting that for realistic ocean currents,

we can expect that the variations of d,uy with depth are much greater than the
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depth variations of B,. This is because B, is dominated by the background F,
which varies only slightly over the thin ocean depth. With this assumption, B,
can be taken out of the integrals in (48), (49), and (50). Equation (48) (in terms

of variables defined above) becomes

AB
K8,By = —B,(ug — u}y) + 5, (51)

-h K
and 0,By (approximately proportional but perpendicular to the horizontal elec-

tric current density Jg) can be written as

g 2 o

———  ABy = —-B,(t, —t;) + ——
+ ffh odz H ( )+ ffh odz

o

—_— AByg.
ffh odz H

(52)

0,By = B, ( T, — ta)

Similarly, Equation (49) becomes
0 . 0
By = Bg(z=0) +/ [B,(t, ~1,) - (K/hK'ldz)'lABH] dz

0
Bu(2=0)+ B, (sT., +/ t,dz’) + sABy. (53)

We have written equations (52) and (53) in this form since the ABy term
will often be assumed to be small enough to neglect. This is because ABpy is,
to a good approximation, proportional to the average horizontal electric currents
in the depth h. Typically, electric currents induced by the Lorentz force in the
regions of ug will short-circuit through deeper water or through the sediment
layer rather than through paths in the horizontal plane (e.g. Sanford, 1971;
Lilley, 1993). Then, the vertically-averaged horizontal electric current is zero
and we will generally neglect the ABy term. This assumption seems reasonable
except when both the flow is barotropic and o is independent of depth, which is
hardly the case for deep ocean circulation at least. (Also note that all the exact
solutions to the idealized models presented in earlier sections, gave ABy exactly
zero.)

Under this assumption, and considering By(z = 0) to be known from obser-

vation, we see from (53) that for a given T,, the shape and magnitude of By
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depend on (s + T'f;f 2, |t>|dz) which is a function of the baroclinicity of the flow
and conductivity structure. An example of this is plotted in Figure 10c.

Also, considering a typical case of deep-water surface-intensified ocean cur-
rents, in which case ABy ~ 0 and (near the surface) |t,| >> |t,|, (52) reduces

to

B,BH ~ -—th, = —B,uH/K. (54)

Equation (54) indicates that measurements of 9,By, B,, and o within the water

would yield an estimate of the absolute velocity of the ocean current.

4.1.1 Horizontal Magnetic Flux

Before proceeding to direct calculations of the vertical magnetic component B,
in §4.2, we note that the non-divergence of B allows us to obtain information
about B, using the divergence of the horizontal components.

In a similar manner to that given in Tyler and Mysak (1993) we can integrate
(53) (assuming, for simplicity, ABy = 0 and B, = F},) to obtain the magnetic
flux 4-; induced between the sea surface and depth h:

- 0 ~
¢ = /h BHdZ = hBH(z = 0) + %FzTaH (55)

where

o 0 0 0
=2 / sdz + 2|,;—| / ) / Ity (2')|d2"dz. (56)

The quantity H, assuming an insulating sediment layer, is H ~ H — D for a
shallow ocean current (of thickness D) over deep water, and H — 0 as u and o
becomes uniform with depth.

From the non-divergence of B,
0 -
/ Vi Buds=Vg-§=-Bi(:=0)+B(s=-h)=—-AB.. (5

Equation (57) gives an expression for the difference in B, across the depth A

due to leakage of the horizontal magnetic components By. Such expressions are
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useful when comparing with data (mostly taken outside of the ocean). In the

general case where ABy # 0 simple expressions such as this are not possible.

4.1.2 Horizontal J and E Fields

Consider the flow ugy to be in the z direction. The scaling arguments presented
at the beginning of this section suggest that an approximate version of (10) for

this case is

0,B: = pody. - (58)

We can use (52) in (58) to solve for the horizontal electric current J, where, as
discussed earlier, we assume that the depth-averaged Jy over h is zero. Hence,

ABgy = 0. We then have

J=-B 1), (59)

Ho

Then, using (59) in Ohm’s law (equation (3), which, for this case and with the
charge advection term neglected, would be E, = J, /o + uB,) we have an expres-

sion for the horizontal electric current
E, = B,u", (60)

which, for B, ~ F, agrees with the results found by Sanford (1971). This inter-
esting result—that the horizontal electric field is independent of depth—also was

found in the exact solutions for the problems presented in §3.

4.2 Vertical Component

To seek solutions for the vertical component, we start with the simplest case in
which the conductivity is horizontally uniform (§4.2.1) and then consider increas-

ingly more complicated (§4.2.2) cases.
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4.2.1 Horizontally-Uniform Conductivity

Consider ¢ independent of z and y, and w = 0. Then the z-component of (18)

(or (17)) can be written as

DB, = KV?B,. (61)
Now further assume 0;B, = 0. Then, (61) reduces to

Ug Bz = szBz (62)
or,

V?B, =t, - VB,. (63)
Substituting B, = F, + b,, using (39) and making the assumption [t, - Vb,| <<
|V2b,|, (63) becomes the 3D Poisson equation

V%, =t,- VF,. (64)

The general solution to (64) in closed form is found using the Green’s function for
this equation (together with the requirement that b, — 0 away from the source

areas):

G(z,y,2[¢,n,¢) = —%((fv '+ -+ (z- )T

(see (?), page 153). The solution for b, is then

b= g7 [ [ [ I - -0
©

If the flow is barotropic and the conductivity is also uniform with depth we can

replace (65) by an area integral:

2+ Ht (@ =8+ (v =)+ (= + H)Y

2+ ((z =€)+ (y — )2 + 22/
(66)

where H is the depth of the ocean. Tyler and Mysak (1993) plotted the solution

dédn,

bz = —ﬁ//%ufr(f,ﬂ)vﬂ(f,ﬂ)lﬂ

for induction by a barotropic double gyre. Here, we will further consider two
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more cases.

The first case we will consider is that of the familiar wind-driven Stommel gyre
(see, for example, Abarbanel and Young (1987)). We choose the stream function
for the ocean velocity associated with this gyre to be defined by the approximate
boundary layer solution ¢ = (1 — e~15%/X — z/X)sin(ry/Y) where the scale
length X =Y = 10" m and we consider the domain 0 < z < X,0 <y < Y. The
stream function (taking ¥, = X m/s = 107 m?/s) as well as a surface plot of the
northward velocity is shown in Figure 11.

We assume ug - VF, = Bnv (where 8, = ,F, = —107'2 T/m), H = 500 m,
and ¢ = 6 (S/m) and solve (66) numerically using a gaussian quadrature program
in the numerical integration toolbox written for Matlab. Solving the integral for
a field of points is rather time-consuming when the points are near the ocean sur-
face since the integrand has a singular behavior and more quadrature coefficients
must be used for sufficient accuracy. To show the basic form of the field, we have
evaluated the field at an altitude of 10 km. This is shown in Figure 12. We see
that the maximum b, occurs in the area of strong northward velocities and the
magnitude is of order 10 nT (though this is probably an over-estimate since the
values for the transport we chose are probably on the high side). Considering the
assumptions we made, the only mechanism creating the b, observed in Figure 12

is that of advection of the ‘planetary magnetism’ F, by the northward velocity v.

Now we will consider a simple case that will allow us to estimate the depen-
dence of the magnitude of b, on the depth and length scales of the flow. We

consider an ocean velocity that can be described by a sum of modes of the form
u = u,e'kety) (67)

where u, = u,&+v,j is a vector in the horizontal plane that is uniform within the
layer —D < z < 0 and zero outside of this layer. For simplicity, we also consider

the conductivity o to be uniform within the layer —D < z <0.
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As before, we consider a forcing due solely to the advection of planetary

magnetism. Hence, (64) becomes

v Vo ei(kz+ly)

2p, = . = —— = —
V%, =t, - VF, Kﬂm V76 Brm (68)

where v, is the northward component of u, which is zero for z > 0 and 2z < —D.

Equation (68) is easily solved by first using the separation of variables tech-
nique (i.e., putting b, o e/*+%)) and then using the familiar Green’s function
techniques to solve the resulting ODE involving z in the domain |z| < oo and
imposing the boundary conditions that b, remain bounded at z = £oo. The

solution (using k = (k? + 1?)}/?) is

oo e™**(1 — e~"P) for z2>0
bz — __2_01{_"&261(kx+ly) 9 _ Rz e—(nz+nD) fOT -D <z< 0 (69)
" —e**(1 — et*D) for z<0

To plot some examples, we assume D = 5000 m, o = 5 S/m (within the water)
[ =0 and k = 27/2000 1/m. The velocity magnitude v, appears as a multiplier
(taken to be 1 m/s, for simplicity). The velocity vectors are shown in Figure 13

while b, can be seen in 14. In Figure 15 we have created a field of gyres using a
linear sum of velocities of the form (67) with k¥ = | = £27/2000 1/m (i.e., the

real parts of u = L(e/koH) 4 eilbe=0)y ) = _i(ikotl) _ ¢ilko=0)) The induced
steady-state field b, is seen in Figure 16.

Figure 17, which uses the same values for the parameters as in Figures 13-
16, shows the amplitude of b, as a function of the current thickness D and the

wavenumber k.

4.2.2 Horizontally Non-Uniform Conductivity

Equation (19) governing B, involves the unknown horizontal components By
in two terms. The first term, involving w, we at first neglect while considering
a flow with w = 0 (a flow where w # 0 is considered in §4.2.4). The second

term, K0,Bpy, can be obtained from the equations for the horizontal magnetic
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components. We use (51) for K3,By in (19). This gives

ABy )

2, dz/K (70)

0:B, =V - (KVygB,)- V. (B,u}, +

When ABy = 0, (70) reduces to an advection-diffusion equation for B, and
may be solved by standard techniques. Often, however, the horizontal diffusion
term V - (KVyB,) will be very small (especially for large-scale ocean features
away from the coasts) and the dominant steady-state balance is

ABgy
V. | B,u} _ =0 71
( “”+f2hdz/K) ()

Since ABpy is irrotational (ABy=Bg(z = 0) — By(z = —h) involves By on
two surfaces with no normal electrical current, by assumption; hence, by (10)
V x ABgy = 0), it can be written as the gradient of a scalar, say ABy = VP,
where P = P(z,y). Also, making the approximation B, ~ F, as before, (71)

becomes a 2D scalar equation for the one unknown variable P:
0 0
V2P - Vln(/ dz/K)- VP = —/h dz/KV - (uiF,). (72)

Given a realistic conductivity field and current data (72) can be easily solved

using numerical techniques.

4.2.3 Decay Time Scales

In the examples we have presented so far, we have assumed steady-state condi-
tions for B,. This assumption is valid when the time scales considered are much
longer than the magnetic diffusion time 74. An estimate of 74 can be obtained
by comparing the time rate of change term 0;B,, to the magnetic diffusion term,
KV?B,, in equation (61). Since V2B, = V%4 B,+08,0,B, = V4B, +0,(—~Vy-Bg)
(using the non-divergence of B), the largest component of V2B, likely scales as
|b|/(LH) (not |b|/H?), where L is a typical horizontal length scale and H is a
typical depth scale. Taking |0;B,| =~ |0;b| we find that diffusion will be more
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important than the time rate of change for time scales larger than
i~ (CH)/K. (73)

The magnetic diffusion coefficient is K ~ 10° in the ocean. The maximum value
for 74 can be estimated using the maximum values for £ (< 107 m) and H (< 10*
m), giving 74 ~ 10° s (~ 12 days). We will now present a calculation that verifies
that (73) is a reasonable estimate.

In §4.2.1 we used simplified equations for b, assuming a steady-state. Using

similar assumptions but leaving in the time-derivative term we obtain

where b, and the forcing term (on the right-hand side of (74) are now functions
of (z,y, 2,t). Assuming K is uniform in space and constant in time, b,(z,y, z,t =
0) = 0, and requiring b, to be bounded, (74) has the solution

[ 1 (e=ltopieeg?
= [ ), avme f(&m,¢,t)dedndCds (75)

where V is all space containing f and f(¢,7,(,t) is the forcing function expressed
on the right-hand side of (74).
If f is harmonic in the horizontal plane (i.e., f o €/**+%) (or can be decom-

posed into such modes)), the solution to (74) is instead
= itesi [* [ L wete- St pgea
b, =e N - fd¢ (76)

For f = —vofme'®**t¥) for t > 0 and —D < z < 0 and f = 0 otherwise, the

integral over z in (76) can be solved giving

t
_ ikz+ly) [* VoBm z -BKt _ D+z\ _joke
b,=¢ /(; — lerf (2m) e erf (2m e dt. (1)

We evaluated (77) numerically for several choices of typical values of the

parameter to obtain the magnitude of b, at the surface (z = 0) for several values
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of t. The results indicate that the magnetic diffusion time as expressed by (73) is
good as a rough indication. For example, using z =0, D = 10 km, k = 27/3000
1/km, ¢ = 5 S/m, and v, = 1 m/s, the magnitude of b, had reached about 10
percent its steady-state magnitude after 174, 50 percent after 574, and by 207y,
b, had essentially reached steady-state.

Note that the arguments presented in this section apply to the setup/decay
time scales for B,. We expect that the time-scales associated with By (within

the ocean, at least) will be much shorter because the diffusion term will scale as

|b|/H?.

4.2.4 When Vertical Motion is Important

In some cases, particularly for barotropic flow over realistic bathymetry, the ver-
tical velocity w cannot be neglected. We will now derive an equation for B, which
although it does not involve w directly, it takes the vertical motion into account.
The derivation is analogous to that leading to the potential vorticity equation in
fluid dynamics.

Consider a scalar fluid property A which satisfies the equation
D=V (78)

where ¥ is a source function for A\. We shall also use the identity
B-D:VA=(B-V)DA - (B:-Vu):VJ\ (79)

(see Pedlosky, 1979 pp. 38). Taking the dot product of the induction equation
(14) with V), adding the result to (79), and using (78) we have

D;(B-V)\)=B-V¥+VA: (KV’B+KVlno x (VxB)).  (80)

For incompressible barotropic flow in a fluid of thickness H; + n, the status
function (%’# (see Pedlosky, 1979, pp. 63) is conserved following the fluid, where

z — H; is the height above the bottom of the layer (located at 2 = —H)) and 7
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is the displacement from the mean depth of the top surface of the layer. This
result applies to a barotropic layer bound by material or fluid surfaces. In many
oceanic cases, the bottom surface is the seafloor (hence H; = H is the depth of
the water), and 7 is neglected (nondivergent approximation). Alternatively, the
bottom of the layer is described by the pycnocline (a material surface separating
lighter surface water from denser water below) in which case H; could be the
thickness of the surface wind-driven mixed layer.

Now consider A in (80) to be the status function, so that ¥ = 0. Because of the
aspect ratio of the ocean, we expect that to order H/L, the dominant component
of V(;I;,f#) will be the vertical component. Also, within the barotropic layer,
provided the o variations with depth are not extreme, the horizontal components
of the ocean-current induced magnetic fields will be weak. Hence, we expect that
when these assumptions hold, a good approximation to (80) can be written as

D (B./H) = %’ (V- {KVB, - K6,B}) = Hil(v-{KvHB,-Ka,,BH}), (81)

where we used VA = V(;,—:i-{#) ~ HL‘E and the z-component of (18).
Equation (81) shows that following the fluid, the changes in B,/ H; are due to
magnetic diffusion and a diffusive coupling with the horizontal magnetic compo-
nents when o is not uniform.
As a specific example, consider a mixed layer where ¢ = o(z). Then (81)
reduces to

u u 1 2
D:(B,/H) = 0(B./H) + 7 - VB, = Boqr - Vin Hi = & (KV?B.). (82)

For steady-state we see that after putting B, = F, + b, and multiplying through
by H;/K, (82) is similar to equation (64) already studied except for the addition
of another forcing term —F,t, - VIn H;. This new forcing term, however, may be
greater than the forcing term t, - VF, by a factor R.a/H; where « is the slope
(e = |VH|) and R, (the radius of the earth) is the scale over which F, varies.
In the case that H; represents the depth of the ocean, steep bottom slopes

have a magnitude of about a ~ 10~%, the radius of the earth £, is 6371 km while
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the depth H is typically 5 km, giving R.a/H; ~ 10. Thus in regions of steep
topography, variations in H could be more important than the advection of F,
in inducing b,. In shallow water topographic forcing may even generate much
stronger fields than those generated by the advection of planetary magnetism.
Similar conclusions can be reached when H; is taken to represent, for example,
the depth of the mixed surface layer. We note that for cases where the variations
in H; are comparable in magnitude to the average Hj, the simplifying assumptions
used above should be reexamined.

Upon comparing (82) (for steady-state) with (64), we see that the B, solutions
for the familiar wind-driven Stommel gyre could have been similarly induced by
a linearly varying H; rather than a linear variation in F,. This is analogous to
the finding in fluid dynamics in which the “g-effect” (due to an assumption of a

linear variation in the rotation parameter) is similar to the effect of a sloping H;.

5 Summary and Discussion

Using a magnetofluidynamic approach, we have investigated electromagnetic in-
duction in the ocean. Since the electrical forces on the fluid are extremely small
for the case of the ocean circulation, the velocity field can be prescribed and
the induction equation reduces to a governing equation for one unknown vector
variable—the magnetic field.

In section §3, we found exact solutions to the induction equation for some
idealized flows. The results gave magnitudes of about 10—100 nT for the magnetic
field by, about 10~® V/m for the electric fields E, and about 10~° A/m? for the
electric current density J induced by the ocean currents.

In section §4.2 we solved an approximation equation and obtained motionally-
induced vertical magnetic fields usually of order 1 — 10 nT but perhaps reaching
100’s of nT for some cases. The results also indicate that the decays scales for
the magnetic field away from the ocean are of the same order as the horizontal

scale of the fiow, which allows magnetic effects to be observabie thousands of
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kilometers inland. The magnetic diffusion time in the ocean is found to be less
than about 10 days even in the most extreme cases. Hence ocean electrodynamics
on much longer time scales is in quasi-static balance with the ocean currents and
conductivity field.

It is not possible to give a unified description of electromagnetic induction that
will apply to all cases of motional induction in the ocean. It is, however, possible
to describe what typically occurs. The electromagnetic induction is generally
driven by a combination of three fields (the conductivity o, the ocean current
velocity u, and the background vertical component of the earth’s magnetic field
F,) and their derivatives.

The conductivity of seawater depends on both temperature and salinity. Given
the range of temperatures and salinities in the ocean, it can is noted ( Filloux,
1987; Tyler, 1992; Tyler and Mysak, 1993) that outside of the polar regions o
varies principally with temperature. Within the polar regions, the situation is
often reversed, with the temperature very near to freezing (=~ —2° C) and the
salinity having large variations due to brine rejection during ice formation and, in
the case of the Arctic, due to large and variable river discharge. Hence, in polar
regions o can be principally dependent on salinity.

Over most of the ocean, warm surface waters have a conductivity roughly twice
as great as that at depth. The warm surface layer is also roughly coincident with
the strong mid-latitude wind-driven ocean gyres. The average depth of the ocean
is about 4 km, while the surface layer thickness is usually less than 500 m and,
for the mixed layer, more typically about 100 m. Typical current speeds are 0.1
m/s. There are, however, certainly exceptions. Boundary currents, for example,
can have very large velocities (exceeding 1 m/s) near the surface and may extend
nearly to the ocean floor.

The conductivity of the wet sediments may reach magnitudes about a tenth
that of seawater. Also, the atmosphere (below the ionosphere) can usually be

treated as an insulator. Finally the conductivity of sea ice depends highly on the
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brine content, but usually it is less than a tenth that of seawater. A map showing
o for the global ocean surface as well as a chart showing the dependence of ¢ on
salinity and temperature can be found in Tyler and Mysak (1993).

The vertical component of the earth’s background field F, is shown in Figure
18. The magnitude varies from about 60,000 nT (= 6 x 10=° T) at the poles to
zero at the magnetic equator.

In the northern magnetic hemisphere, F, is directed downward. Hence, in a
typical case, the Lorentz force u x F tends to create an electrical current per-
pendicular and to the left of the ocean current velocity. Short-circuiting occurs
through deeper water creating a closed circuit and magnetic flux through this
circuit. In this case, the induced horizontal magnetic field by is strongest at the
interface between the surface and deeper layers (where the maximum velocity
shear occurs) and is directed in a direction opposite to that of the ocean velocity.
(In the southern magnetic hemisphere, the sign of F, is reversed and by would
be directed in the same direction as the velocity.)

To have an ocean-induced vertical magnetic component b, we require that at
least one of o, F,, u varies horizontally. This is generally the case in practice. The
examples of b, we have derived in this paper were forced by functions with simple
and smooth variations (e.g. forcing due to advection of planetary magnetism
assumed smooth variations in F,). Sharper variations exist in the ocean and
probably generate b, fields (perhaps unsteady) much larger than the b, fields we
have calculated).

There are two ways of thinking of b, induction. In the first case, b, is generated
due to a convergence in the horizontal magnetic flux 5, as discussed in §4.1.1.
Note that in this case, the b, at the sea surface and sea floor may be in opposite
directions. Also, this type of induction of b, does not occur in a barotropic fluid
(when o is also uniform over h) since & for this case is zero.

In the second type of b, induction, electrical currents short-circuit in the

horizontal plane rather than in a plane containing the vertical axis. This type of

30



induction is most efficient when the flow is barotropic (and ¢ is uniform over h).
Also, note that b, due to this induction must have the same direction at the sea
surface and at the seafloor.

We have presented arguments which indicate that for uniform ocean conduc-
tivity o, barotropic currents are efficient generators of electric fields but poor
generators of electrical current and magnetic fields, while baroclinic currents are
efficient generators of electrical current and magnetic fields, and (in our simple
examples) poor generators of electric fields. When, however, we include a consid-
eration of the vertical dependence of ¢ it appears that virtually all realistic forms
of ocean circulation will be reasonably efficient generators of electrical current and
magnetic fields. Also, these magnetic fields do not remain confined to the ocean
and probably have detectable magnitudes thousands of kilometers away from the
ocean. Typical steady ocean circulation features should induce magnetic fields of
order 10 nT outside of the ocean, while fields within the ocean may be an order
of magnitude greater.

An important point should be made about the underlying assumption |b| <<
|F'| which we have made repeatedly in the analyses. From a preliminary inspec-
tion of large-scale steady induction problems, this assumption seems valid since
the typical magnitudes of the ocean-induced magnetic fields are several orders
of magnitude less than that of the earth’s background field F. In making this
assumption, however, we are not allowing for the possibility of a positive feed-
back of b onto F. Or, stated another way, we do not allow for ‘self-excitation’ or
dynamo modes. Our current research indicates, however, that there may be cases
where feedback is important, particularly in regions where there is a net flux of
conductivity. On a global scale, systematic ocean effects such as the poleward
transport of conductivity may be extremely important in establishing F as well
as b.
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A Appendix: List of Symbols

B magnetic flux density (T)

H magnetic field strength (A/m)

J electric current density (A/m?)

D electric flux density (C/m?)

pe electric volume charge density (C/m3)

E electric field strength (V/m)

e = frlio magnetic permeability (H/m)

to = 47 x 107 magnetic permeability of free space (H/m)

i relative magnetic permeability (dimensionless, and in this report taken to be

= 1 everywhere)
€ = €€, electric permittivity (F/m)
€, = 8.854 x 10712 electric permittivity of free space (F/m)
€. relative electric permittivity of material (dimensionless), (¢, ~ 80 for seawater)
N = (ur€,)!/? (dimensionless) index of refraction
o electric conductivity (S/m)
¢ = (fo€s)~1/? speed of light ~ 3 x 10° (m/s)
K = (op,)! magnetic diffusivity (m?/s)
b =ocean-induced component of magnetic flux density (T)

F =background component of magnetic flux density (T)
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w = angular velocity of solid-body rotation

Q =2r/day ~ 7.3 x 107® (radians/s) rotation rate of the earth
Rp = 6370 km, radius of earth

D, total derivative the fluid)

u = uf + vy + wz velocity of ocean currents

$ horizontal magnetic flux (horizontal magnetic field integrated through depth

of ocean)
u, ocean velocity at surface
i depth decay factor of flow
~ depth decay factor of conductivity
A horizontal wave number of ocean current shear
B = (7% +4\2)1/?2
H depth of ocean

h total depth of ocean and sediment layer

Units
S = siemans = A/V
Wb = webers = V- s
H = henries = Wb/A
F = farads = C/V
C = coulombs
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A = amperes = C/s
T = teslas = Wb/m?
V = volts

s = seconds

m = meters
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B Appendix: Matlab Solution

Below we give the Matlab output for the analytical solutions for Z (Z) and Z’
(Zp) as discussed in §3.2. (To convert to the notation used above, set g = v,m =

gyl = A uo =u, Ko=K,.)
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Figure 1:
Ocean surface current (see equation (20)) assuming g = 1/200 1/m, A = 27 x10~°

1/m, and u, = 1 m/s.

Figure 2:
Induced horizontal magnetic field B, due to velocity profile shown in Figure 1
calculated from equation (32) assuming y = 1/5000 1/m, 0, = 58S, F, = —3x10~%
T, and F, = 3 x 1075T.

Figure 3:
Induced horizontal magnetic field B, due to velocity profile shown in figure 1
calculated from equation (32) assuming v = 1/5000 1/m, 0, =5 S, F, =0, and
F,=3x10°T.

Figure 4:
Electromagnetic fields calculated as described in §3.2 assuming v = 0, g = 1/500
1/m. In (a) the prescribed velocity and conductivity are shown as solid and

dashed lines respectively.

Figure 5:
Electromagnetic fields calculated as described in §3.2 assuming v = 0, x = 0

(barotropic current).

Figure 6:
Electromagnetic fields calculated as described in §3.2 assuming v = 0, p = %
1/m.

Figure 7:
Electromagnetic fields calculated as described in §3.2 assuming v = 1/(5 x 103)
1/m, p=1/500 1/m.
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Figure 8:
Electromagnetic fields calculated as described in §3.2 assuming v = 1/(5 x 10®)
1/m, p =% 1/m.

Figure 9:
Electromagnetic fields calculated as described in §3.2 assuming v = 1/(5 x 103)

1/m, p = 22 1/m.

Figure 10:
An example (described in text) of the vertical coordinate s (b), and induced
magnetic field b, (c), calculated assuming the velocity and conductivity profiles
shown in (a). The sediment layer extends down to h = —3H. (In (a) the vertical

scale is only shown to z = —1.5 H.)

Figure 11:
The stream function ¢ (a), and northward velocity v (b) for a Stommel gyre
(described in text §4.2.1).

Figure 12:
The vertical magnetic component b, (calculated from equation (66) at an altitude

z = 10 km) induced by the Stommel gyre shown in figure 11.

Figure 13:
Real part of ocean current velocity field (67) with { = 0 and k¥ = 27/2000 1/km.
(See §4.2.1 for further details.)

Figure 14:
Induced vertical magnetic field b, at z = 0 calculated from (69) due to ocean

currents shown in Figure 13. (See §4.2.1 for further details.)
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Figure 15:

Ocean current velocity vectors for a field of gyres. (See §4.2.1 for further details.)

Figure 16:
Induced vertical magnetic field b, at z = 0 due to ocean currents shown in Figure
15. (See §4.2.1.)

Figure 17:
The amplitude of the induced vertical magnetic field b, at z = 0 (i.e., %’}(1 -
e~*D)) as a function of the wavelength (= 27 /«) and thickness D of the ocean

current features seen in either figures 14 or 16.

Figure 18:
The vertical component of the earth’s magnetic field F, as determined from spher-
ical harmonic coeflicients based on MAGSAT observations (courtesy of Robert

Langel). Here we use the convention that positive values correspond to an upward

directed field. Units are nT.
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