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Abstract

In a rotating reference frame, Maxwell’s equations will not, in general,
retain their inertial-frame form. More importantly, the constitutive rela-
tionships will depend on both the motion of the reference frame as well as
the relative motion of the medium in this reference frame.

In the limit of slow rotational velocities, the electrodynamic equations in
the rotating reference frame are given for the cases of a medium stationary
in the rotating frame, and a medium with a general velocity relative to
the rotating frame. The last case is considered as a necessary formalism
before large-scale electromagnetic induction processes in the ocean can be
correctly modelled.

After time and space scaling, a governing induction equation in one vec-
tor variable (b) is derived and written out explicitly in various coordinate
systems.
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1 List of Symbols

B magnetic flux density (T)

H magnetic field strength (A/m)

J electric current density (A/m?)

D electric flux density (C/m?)

pe electric volume charge density (C/m?)

E electric field strength (V/m)

fo = 4w x 10”7 permeability of free space (H/m)

€ = €€, electric permittivity (F/m)

€, = 8.854 x 10712 permittivity of free space (F/m)

€ relative permittivity of material (dimensionless), (€ & 80 for seawater)
o electric conductivity (S/m)

¢ = (1o€s)~1/* speed of light ~ 3 x 10° (m/s)

K = (op,)! magnetic diffusivity (m?/s)

) =2r/1 day ~ 7.3 x 103 (radians/s) rotation rate of the earth
Rg ~ 6370 km, radius of earth

D; total derivative (time rate of change moving with the fluid)

u = u + vy + wz velocity of ocean currents

¢ latitude



Units
S = siemans = A/V
Wb = webers = V- s
H = henries = Wb/A
F = farads = C/V
C = coulombs
A = amperes = C/s
T = teslas = Wb/m?
V = volts
s = seconds

m = meters



2 Introduction

In this report series we investigate the theory of electromagnetic fields induced
by ocean currents. The general motivation for this research is to explore the
potential for using the existing magnetic data set in ocean and climate studies.

In the first report (Tyler and Mysak (1993)) we discussed the magnetohy-
drodynamics of a fluid with the conductivity and mass density characteristics of
seawater. In this restricted case the electromagnetic body forces on this fluid due
to its motion through a weak background magnetic field can be neglected and
the conductivity and velocity fields can be prescribed.

We pointed out in Tyler and Mysak (1993) that the equations and results
presented were not immediately applicable to the ocean since all calculations
assumed an inertial reference frame rather than the realistic accelerating reference
frame of the earth.

The purpose of this report is to generalize the earlier description of induction
by ocean currents so that it includeé the possible effects of rotation. It is expected
that this additional formalism is required before any general consideration of the
electrodyamics of large-scale ocean currents can be made.

By way of analogy, it is known that equations describing fluid dynamics in
laboratories attached to the spinning earth can neglect the effects arising from
rotation. Over the larger scales of the oceans, however, additional rotational
terms must be included in the governing equations. Similarly, the success of
certain sets of equations in describing the electrodynamics in laboratory exper-
iments does not preclude the necessity for a formal consideration of rotational

electrodynamics before application to the ocean scales can be justified.

2.1 Paradox of a Rotating Shell of Charge

Imagine placing a net charge onto a spherical shell and allowing the sphere to

rotate. In an inertial reference frame, it is quite clear that the the rotating charge



can be treated as an electrical current and hence a magnetic field will be observed.

Now imagine making observations while moving in a frame that rotates with
the shell. Now the electrical charges appear to be at rest so it could be wrongly
assumed that no magnetic field is observed.

In fact, the magnetic field does not disappear for the rotating observer. Under
typical experiments, we can even expect that the axisymmetric part (at least) of
the magnetic field will be similar in both the rotating and stationary reference
frames. A slightly more complicated version of this example is usually referred
to as Schiff s Paradoz. (For related discussion see Pegram (1917), Schiff (1939),
Feynman (1964), Post and Bahulikar (1971), Corum (1980), and Lorrain (1993).)

At the heart of this paradox is the fact that the rotating reference frame is
accelerating and equations of electrodynamics valid in an inertial frame do not
carry over—even if the velocities involved in the rotation appear to be ‘non-
relativistic’ (Ju| << ¢).

Furthermore, it should be remembered that Special Relativity is not immedi-
ately extendable to accelerating reference frames and thus approximations arrived
at by examining terms in the Lorentz transformation will not generally be valid
in the accelerating (or rotating) reference frame. Stated another way, in the ac-
celerating frame we can expect effects other than just the length contractions and
time dilations predicted by Special Relativity.

Neither the constitutive relationships nor Maxwell’s equations are generally
invariant under transformation to a rotating reference frame (see, for example,
Feynman et ol (1964), Van Bladel (1984), Schieber (1986)). Though this has been
evident for much time, it has not always been appreciated, as noted in Webster
and Whitten (1973): “However, the belief that all four of the field (Mazwell’s)
equations are invariant under such conditions (Ju| << c¢) is still prevalent and
causes misconceptions in physical applications, including astrophysical and geo-

physical ones.”



3 Electrodynamic Equations in a Rotating Co-
ordinate System

Despite the fact that several papers have appeared regarding the proper form of
Maxwell’s equations in a rotating coordinate system, results are often confusing
and difficult to compare for several reasons. First, results obtained for vacuum
electrodynamics are not necessarily valid when material media is included. Simi-
larly, certain assumptions about the medium such as homogeneity, small rotation
velocities, or rotational symmetry, are made that limit the scope of validity of
the results. Also, the transformation of Maxwell’s equations will depend on their
form (Amperian or Minkowskiian). Finally, there is the usual confusion stemming

from different conventions on units.

Schiff (1939) used methods from General Relativity to transform the vacuum
Maxwell’s equations into the rotating form. Modesitt (1970) arrives at a similar
restricted result using what he claims to be a “classical” derivation.

A clear and insightful derivation of Maxwell’s equations in a relativistic ro-
tating vacuum reference frame is given in Ise and Uretsky (1959, 1961).

When considering material media, extra terms appearing due to rotation have
sometimes been described as constitutive in nature (Post and Bahulikar (1971))

and at other times they are described in terms of “fictitious” charges and currents

(Schiff (1939), Webster (1963)).

Perhaps the greatest confusion stems from the transformation of the consti-
tutive relationships to the rotating reference frame. (This can also play a role in
the description of the rotating Maxwell’s equations.) Anderson and Ryon (1969)
claim that the work by Post (1967), Post and Yildiz (1965), and Yildiz and Tang

(1966) (after here referred to as PYT) involves an ad hoc assumption since the
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free-space and matter portions of the constitutive relationships have been trans-
formed in different ways. Anderson and Ryon show that these earlier works,
while satisfying one important condition (for a medium stationary in an inertial
frame, the equations reduce to the familiar Maxwell-Minkowski form), they fail
to satisfy the relativistic velocity addition law. Anderson and Ryon present a
method which removes these inconsistencies.

In physical terms, the major criticism against the PYT scheme is that they
implicitly assume that the state of motion of the medium has no physical conse-
quences for electromagnetic radiation (Anderson and Ryon, (1969)).

Mo (1970) presents a detailed transformation of the equations of electrody-
namics using a covariant formalism but his “free-space” treatment of one of the
constitutive relationships was criticized by Post and Bahulikar (1971) as being
contrary to experimental evidence.

In recent years, the discussion of rotational electrodynamics has become more
clear (Van Bladel (1984), Schieber (1986), Kretzschmar and Fugmann (1989),
Mashhoon (1989)) and consistency is being gained in the treatment of the con-
stitutive relationships in accelerating reference frames using a “co- moving” (Van
Bladel (1984)) or “locality” (Mashhoon (1988,1989) hypothesis.

The general problem of rotational electrodynamics in the presence of material
media is still not closed (P. Lorrain (1993) pers. comm.; B. Masshoon (1994) pers.
comm.). In short, there seems to be agreement on how to do electrodynamics
for an inertial observer observing rotating material media; and there seems to be
agreement on how to do electrodynamics in a rotating frame when no material
is present. As of yet, there are still no undisputed methods of putting these two
together. For our applications, however, we need to consider both formulations
of electrodynamics valid for observers in the rotating frame, and the presence of
a rotating non- homogenous medium.

Fortunately, however, the remaining disagreement between different researcher’s

results usually appear in the second-order (u/c)? terms. So for the case (u/c)? <<



1 that we will be considering, a greater consistency among results from different
researchers does occur.

We shall follow the style of the later papers (particularly those by Van Bladel)
in presenting our formulation of the equations describing electrodynamics in a
rotating coordinate system attached to the earth’s surface.

Briefly the strategy is as follows. Upon requiring covariance of Maxwell’s
equations in their tensorial form, and using the metric describing the rotating
coordinate system, we derive the vector form of Maxwell’s equations in the ro-
tating frame. We then use the co-moving hypothesis (to be described below) to

determine the transformations of the constitutive relationships.

3.1 Maxwell’s Equations

In the following, we will use upper-case letters to denote quantities observed in
an inertial reference frame and lower-case letters for quantities observed in the
rotating reference frame.

In general relativity theory, the principle of equivalence states that noniner-
tial reference frames are equivalent to a gravitational field. This should be kept
in mind when reviewing the literature since much of what we will be presenting
was developed in the gravitational literature and has been adopted for rotating
(noninertial) systems. In fact, while discussing the effect of a gravitational field
on Maxwell’s equations, Van Bladel also derives the transformation to rotating

cylindrical coordinates.

Briefly, the electromagnetic tensors Mg, Nag satisfying the generalized four-

dimensional Maxwell’s equations

1 8
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under an arbitrary metric g,p are given by
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Above, J* = (pcc,]) is the four current, —|g| is the determinant of g,g and

2

|v| is the determinant of ~;x, where vix = gigr — gix and g; = go.-(gog)"l/ 2, Here, a
useful relationships is |g| = goo|y|- Also, while greek indices refer to summation
over 0,1,2,3, latin indices sum over just 1,2,3. Letters with superscripts refer to
contravariant components and subscripts refer to covariant components of the
vectors e, b, and h (described in the list of symbols).

The metric describing a rotating cylindrical coordinate system is

1-%2 o =22 o
00 -1 0 0
Gop = -Qr? 0 —r2 0 ’ (5)

c

0 0 0 -1
in the above, we have neglected the gravitational effects of the electromagnetic
field on the metric tensor gugs.
Using 5 in 3 and 4, we obtain the following electromagnetic tensors in rotating

cylindrical coordinates:

0 edr(1 — o 2)T cd®(1 — Q% 2)T cd*(1 — Q—:zr—g):’l
pod = | —ed (1= 25)T 0 hafr —ho/r
—cdf(1 - ﬂgf’)v —hy/r 0 k|7
—ed*(1 - £2)F ho/r —h,/r 0

]



0 —e./c —eg/c —e,/c

_ | e 0 r(1 - LE)F —rbf(1 - LT
Noo = ¢pjc —rtr(1 - )3 0 1 — ey |- @)
eJc rb(1— ﬂ’r’) r —rbr(1 - LT 0

Inserting 6 and 7 in 1 and 2, neglecting terms in (%)? = (2)? and convert-
ing to physical-component vector form, Van Bladel recovers the usual Maxwell’s

equations in cylindrical polar coordinates:

V x e = —0;b, (8)
V.d=op,, 9)
Vxh=0d+j (10)
V-b=0. (11)

We see that this form of Maxwell’s equations appears to retain its form under
tranformation to a slowly rotating coordinate system. This will not necessarily
be true for other forms. Also, although Maxwell’s equations have a similar form,
this does not mean that measurements of the fields and sources would be the

same as those measured by an inertial observer.

3.2 Constitutive Relationships in a Rotating Coordinate
System

As discussed above, the usual constitutive relationships of the form D = €E,
for example, do not hold in the rotating reference frame. Instead, for this example,
we must consider a relationship of the form D = D(E, B) or D = D(E, H).

In fact, consideration of the motion of the media is necessary even when the
motions are uniform translations. Furthermore, as pointed out in Bolotovskii
and Stolyarov (1975), the ratio of the velocity of the medium to c is not always
the parameter that determines the importance of relativistic effects when ma-

terial media is present. They cite examples of so-called “moderating systems”,
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in which the speed of propagation of electromagnetic waves can be significantly
smaller than the speed of light in vacuum leading in some cases to relativistic

effects even when the velocity of the medium is quite small.

In this section we will consider two cases. In both cases the observer is moving
in slow solid-body rotation. In the first case that we consider, the material
medium is rotating with the observer. Hence, this case gives the constitutive
relationships for material that appears stationary to the rotating observer.

In the second case, the material has a velocity relative to the observer. This
is relevant since we wish to derive the appropriate constitutive relationships to be
used by an observer moving with the solid earth who observes the ocean moving

with a different velocity.

3.2.1 Co-Moving Hypothesis

A frame of reference that is “co-moving” with another reference frame has, during
that instant, no relative velocity with the latter. The hypothesis of “locality” or
the “co-moving” assumption (also called the “instantaneous rest-frame” theory
(Van Bladel (1976))) proposes that local observations made by an accelerated
observer are identical to those made by an observer that is instantly at rest in
the so-called “co-moving” frame. This idea can be made more clear with an
example.

Consider a spherical-shell coordinate system attached to the surface of a spin-
ning globe. This frame must normally be accelerating if it is to remain attached
to the surface of the globe. Now imagine that at time ¢ = t; we define two dif-
ferent coordinate frames: one which continues attached to the surface for ¢ > #4;
and a second which is allowed to ‘fly apart’. By ‘fly apart’ we mean that for
t > t; the second system will no longer be accelerating. Each element of the
coordinate system will be allowed to follow a steady motion with the velocity it

had at ¢t = ¢;.
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Now at t = t; + 6t (6t — 0) we describe the second reference frame as a non-
accelerating frame that is instantaneously co-moving with the first accelerated
reference frame.

The hypothesis of locality claims that for phenomena involving no exten-
sions in space-time the results measured in both reference frames described above
should be identical. (By “no extensions in space time” we mean that the mea-
surements must be point-like in space-time (coincidences); comparisons involving
two different points in space or at different times are not in this category.) The
accelerated reference frame, in this respect, is seen as a collection of inertial ref-

erence frames which vary in space and time.

The co-moving hypothesis should be understood as an approximation. In

particular, Van Bladel (1976) draws attention to the following shortcomings:

o It neglects the coupling between gravitational fields and electromagnetic

fields.

o It neglects the influence of the centrifugal forces, which tend to deform the

material and to create anisotropies and nonlinearities.

¢ It does not recognize the fact that in general an accelerated medium will
not be in local equilibrium, and hence the conditions for the derivation of

linear laws are not respected.

The above considerations will not be important in our application. This can
be easily seen by criteria developed by Shiozawa (1973) (but see letter by Atwater
(1975) regarding this study and following rebuttal by Shiozawa).

3.2.2 Approximate Constitutive Relationships in a Rotating Coordi-
nate System (Material Medium in Solid-Body Rotation)

Under the co-moving hypothesis, Van Bladel derives the constitutive relationships

for material media under rotation. Neglecting any anisotropy in the electrical
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properties of the material that might arise from stresses and deformation of the

material due to rotation, he writes for the co-moving reference frame,

D' = ¢E/ (12)
B’ =, H/, (13)
J =oE (14)

Above, € = €€, is the absolute electrical permittivity, €, is the relative permit-
tivity, €, is the permittivity of free space, p = p,, is the magnetic permeability,
pr is the relative permeability, p, is the permeability of free space, and o is the
conductivity.

To find the components of the constitutive relationships in the accelerating
frame we could proceed by first relating the metric of the two systems (Heer
(1964)) and then seeking a direct transformation. For clarity, however, the two-
step approach used by Van Bladel is preferred. In the first step, a transformation
is made from the co-moving inertial frame to a stationary inertial frame. That is,
the co-moving frame is defined by the instantaneous velocity field of the acceler-
ating frame. The transformation takes us to the frame in which these velocities
vanish. This tranformation is then similar to the simple Lorentz transformation
but with the velocities being a function of space. Hence, we are transforming
a collection of inertial frames to a common inertial frame. We then have the
constitutive relationships of the rotating media as they would be observed by an
observer in a rigid inertial reference frame.

In the second step, we transform the components of the constitutive relation-
ships from the inertial frame to the accelerating (rotating) frame in a manner
similar to that shown for Maxwell’s equations.

This calculation is shown in Van Bladel (1984). After assuming (%)? =

(8

Z)? << 1 and writing his results in a vectorial form comparable with that

of Anderson and Ryon (1969), we have (for quantities in the rotating system)

1
d=¢e— iU X b], (15)
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1 €
h_;b—ﬁuxe, (16)

1/2 is the index of refraction.

where N = (ur€,)
These results agree with those calculated by Anderson and Ryon (1969). For
nonmagnetic material 4 = p, and since we are neglecting the second-order terms,

the results of PYT are also consistent.

In a manner similar to that above, Ohm’s law is seen to carry over to the

rotating system:
j=oce. (17)

Now we can use equations 15-17 to remove D and H from the Minkowskiian

Maxwell’s equation 8-11. This gives

Vxe=—atb, (18)
V.b=0, (19)
€
V-(ee—ﬁuxb)=pe, (20)
lb € — 5 € b) 4
Vx(; —Fuxe)_ 1t(ee—ﬁux )+ (21)

3.2.3 Approximate Constitutive Relationships in a Rotating Coordi-
nate System (Material Medium with Generalized Velocity)

The constitutive relationships derived above will be inadequate to describe pro-
cesses in the ocean since in this case the medium (ocean) has a velocity relative
to the rotating observer.

Considering the arguments used in the co-moving hypothesis, the constitutive
equations derived for the solid-body rotation medium could as easily have been
given for an observer being advected along by an ocean current. The velocities in
this case would represent the velocity of the solid-body rotation plus the velocity

of the ocean currents.
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This suggests a means of deriving the appropriate constitutive relationships
for the ocean. Then we have two steps. First, we assume relationships of the
form 12—14 in a frame instantaneously at rest with the oceans. As before we
Lorentz transform this collection of inertial frames to a common inertial frame
stationary with respect to the rotating earth.

The second step is the same as before; we transform all quantities to the accel-
erting (rotating) reference frame as we did for the rotational Maxwell’s equations
and constitutive relationships for the material media in solid-body rotation.

After doing this, we find we can write the constitutive equations in a form

similar to 15—186:

1 .
d=¢[e— 7l X b], (22)
1 € .
h—;b—-]—v—z-uxe, (23)
where
it = ug + uc(l — N?), (24)

in which u. is the ocean current velocity with respect to the solid earth, and the

solid-body rotation velocity of the earth is
ug = 0 cos A = Qrsin 44, (25)

where ¢ is the latitude and @ is the colatitude.

The relation between j and e becomes
j = peuc +o(e+uc xb). (26)

Equation 26 states that an observer attached to the solid earth observes electrical
currents due to space charges p. advected by the moving medium (in this case
the moving medium is the ocean and has relative velocity uc) as well as the usual
currents induced by the electrical field observed in the frame of reference moving
with the medium.

In deriving 22—26 we neglected ﬂls-'—ﬂgglﬁ, Es;'lﬂl, L“?g_li and N —2@%&1}1

relative to 1.
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Now we can use equations 22-26 to remove D and H from the Minkowskiian

Maxwell’s equation 8-11. This gives

Vxe=—6tb, (27)
V.b=0, (28)
€ .
V-(ee—ﬁz-uxb)=pe, (29)
V x (1b = =i x ) = Bi(ce — —=ii x b) +] (30)
p 7zl X €) = B(ee — 571 j.

3.3 Induction Equation in a Rotating Coordinate Sys-
tem

Equations 27-30 give Maxwell’s equations in terms of F, B. It was assumed that
the velocities involved were much smaller than that of light. No assumptions
about the length or time scales have yet been made. We now wish to combine
for a higher order governing equation involving only B. To do this we will now
make additional assumptions concerning the length and time scales. From now
on, we will not be considering magnetized media, so we let p = y,.

We start by considering equation 26. Using 29 to substitute for p., and setting

N?% = p,e, = (1)e,, we can rewrite 26 as
J=uc6, [V - (e, — 1 x b)] + o(e + uc x b). (31)

Now we can see by comparing the terms in the square brackets with the terms in
the curved brackets that the charge advection (square brackets) can be neglected
compared to the charge conduction (curved brackets) provided the length scale
we consider satisfies both £ >> £|uc| and £ >> %|ii|.

In another sense, it can be easily shown that in order for the magnetic fields
due to charge advected by the rotating earth to be important, the space charge

would be so large that the associated electric fields would be unrealistically large
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(Stevenson (1974); Lorrain (1988)). With the charge advection term neglected,
31 becomes

j=o(e+uc xb). (32)
We can use 32 to write 30 as

V x (i—b) —V X (€1 X e) — 0;(ee) + di(e,ii X b) —oe —oue x b=10, (33)

where we have set p, = 1.

If we consider times scales 7 >> £, we can neglect the third term relative
to the fifth. Also, if §(L/7)c™? << 1, the fourth term will be much smaller
than the first. Finally, for £ >> i the second term is small relative to the
fifth. Considering the typical values € = €,¢, & 80¢,, €, = 8.854 x 107'2 F/m,
¢? = (€pto)™M? ~ 9 x 10 (m/s), it ~ 102 m/s, we can see that the conditions
above are satisfied when studying induction by the ocean currents. The dominant
balance is then between the curl of the magnetic field and the electrical current,

as in the inertial frame case:
V x b = p,j=0(e+uc xb). (34)

Since 27, 28, 34 and 32 have forms similar to those found in the inertial frame, we
can combine these into an induction equation in a manner similar to that done for
the inertial frame (this can be seen in Tyler and Mysak (1993)). The induction
equation is given in the appendix in vectorial form as well as for several common

coordinate systems.

4 Summary

In summary, we have derived the equations of electrodynamics that should be
used in a rotating reference frame. Both cases of a material medium stationary
with respect to the rotating reference frame, and a medium moving in the rotating
frame (such as the ocean does) can be described by the same set of equations once

we define the velocity it = ug + (1 — N?)ue.

16



We can then write the low-velocity constitutive relationships for the rotating

frame as
d=ee— %ﬁ % b], (35)
1 € .
h—;b—ﬁuxe, (36)
j = petuc + o(e+uc x b). (37)

Maxwell’s equations for e and b can then be written as

Vxe=—0tb, (38)

V.b=0, (39)

V-(ee—%ﬁxb):p,, (40)

V x (3= - x e) = (ce — —-ii x b) +] (41)
P 2l X e) = Olee — 5 j

When the electrical properties of the ocean as well as the length scales are
considered, equations 38, 39, and 41 are approximately equivalent to the usual
inertial-frame form and an induction equation for b can be derived and is given

in the appendix.
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6 Appendix

In the following we give the induction equation in several vector forms as well as
the component forms for common coordinate systems. We have shown that for the

observer rotating with the earth and observing electrodynamics due to the oceans
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moving with relative velocity, the appropriate induction equation has a form
approximately similar to that for the inertial-observer case. For our applications
u should be understood to be the velocity of the ocean currents (earlier referred
to as uc) with respect to the solid earth. The magnetic diffusion coefficient is
K = (p,0)~!. For a description of the physical significance of the individual
terms see Tyler and Mysak (1993).

6.1 Vector Induction Equation

It is possible to write the induction equation in several ways. While the differ-
ent forms are of course equivalent, some forms are more amenable for certain
applications. More importantly, the finite-difference forms of these equations are
not equivalent and we have derived a ‘lux’ form (equation 47) for use in the
discussion of numerical studies to be presented later.

As described in Tyler and Mysak (1993), we are primarily interested in steady-
state solutions. The standard form of the induction equation we will use is shown
in 47. This form is useful since for steady state numerical problems, the equation
can be divided through by K, and we avoid the VK terms which can be very
large at conductivity interfaces.

In general, we can write the induction equation in the following forms.
0B=V x(uxB—-KV xB), (42)

B ={—(V-u)B+(B-V)u—(u-V)B} -V x (KV xB). (43)
DB=8B—(u-V)B={-(V-u)B+(B-V)u} -V x (KV x B). (44)

When we restrict ourselves to Cartesian coordinates, we can use the identity
V xV xA=V(V-A)— V2A together with the nondivergence of B to write

DB =8B+u-VB=—(V-u)B+(B-V)u+KV’B+KVIno x(V xB), (45)

18



or in a flux form as

&B = V.{—uB+ B,u+KVB, — K§,B}s (46)
+  V-{-vB+Byu+KVB,— Kd,B}j
+  V.{-wB+B,u+KVB,— K3,B}s.

We can usually assume the ocean to be incompressible, hence 45 becomes
DB=8B+u-VB=(B:-V)u+KV?’B+ KVIno x (V x B). (47)

Writing 47 out for the three components, we have

0:B; + u0,B; + v0yB; + w0, B, B,0,u + B,0,u + B,0,u

+ KO0,0,B; + K8,0,B; + K0,0,B;
+ KO,lno(d,By— 0,B;) — K0,lno(0.B, — 0.B,)
(48)
0:By + u0,By + v0,By + w0,B, = B,0,v+ B,0,v + B,0,v
+ K0,0.B, + Ko,0,B, + K98,0,B,
+ KO0;Ino(0yB; — 0,By) — K0,In0(0,B, — 0,B,)
(49)
0:B, + u0,B, + v0,B, + wd,B, = B,0,w+ B,0,w+ B,0,w
+ K0,0,B,+ K9,0,B, + K0,0.B,
+ K8;Ino(0.B; — 0:B;) — K8,Ino(9,B, — 0,B,)

(50)

In the following, the induction equation assuming incompressible flow will be
given in spherical and cylindrical coordinates. Expressions for the curl and scalar
Laplacian terms for either coordinate system can be found in standard texts. The

subscript on the curl terms describe the component (not partial differentiation).
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6.2 Induction Equation in Spherical Coordinates (for co-
latitude 6)

r equation:

0:B,+ [u:-VB,]=[B-Vu, (51)
+K [V2B, ~ 2B, — 20y (Bysin6) — ——0,B)|
+K [%ao lno(V x B), - rsiln 50100 (V x B)|
6 equation:
8, Bo+ [u VB, + -::ugB,] - (52)
[B Vg + %Bou,]
+K [VzBo + %aoB, - (rsilT)z o — 2%%&&]

1
+K [rsinoa,\lna(v xB). — 8, lno(V x B),\]
A equation:
1 1
0:B), + [u -VB, + ;-u,\B, + ;u,\Bg cot 0] = (53)
[B -Vuy + -:.-B,\u,. + %B,\Ug cot 0]
1 cosd 1
K |V?B) + 2——0\B, + 2———0\B; — ————
+ [ M T T (rsin6)? A (r sin §)* ]

+K [8, Ino(V xB), — %69 Ino (V x B)T]
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6.3 Induction Equation in Spherical Coordinates (for lat-

itude ¢)
r equation:
0:B,+ [u-VB,|=[B:Vuy, (54)
2 2 2
2 —_—— — ——— —
+K lV B.,- 2 B,- 2 cos ¢6¢, (B¢ COS ¢) 2 cos ¢8AB,\]
1 1
+K l—;a¢ln0(v X B))‘ + rcos¢8A lna(v X B)¢:|
¢ equation:
8,Bs+ [—u VB — %u¢B,] - (55)
[—B . VU¢ - -}:B¢ur]
2 1 1 sin¢
— 2 — — ——— — —_—
+K [ V"B, r2 Oy B: + (r cos qu)quS 27'2 cos? ¢a'\B'\]
1
+K [rcos ¢6,\1n0'(V xB), — 0 Ino (V x B)A]
A equation:
0:By+ [u - VB, + -;l:'u,)‘B.,- - %u,\B,,s tan ¢] = (56)
[B Vuy + %B,\u, - %B,\% tan ¢]
1 sin @ 1
K |V?By+2 OB, —-2————0\By; — ————B
T [ M g T T roos ) T (reosd)? *]

+K [~8,1no (V x B), + 200 (V x B),

6.4 Induction Equation in Cylindrical Coordinates

z equation:

&B,+[u-VB,] = [(B-V)u,]+K |[VB,| (57)
+ K010 (Y xB), - %axlna(v xB),]
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r equation:

8B, + [u-VB]=[B-Vu]
+K [V2B, - :—23, - 2%8@] +K [%aA Ino(V x B), — 8,In0 (V x B) A]

A equation:
0B, + [u - VB + %u,\Br] = [B -Vuy + %B,\u,] (59)

+ K[VBy+ 2:—26@ - -:33,\] +K[8,In0(V xB), —8,lno(V x B),]
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